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Abstract

The paper presents a multi-channel active noise control algorithm that is designed to reject periodic signals of unknown
frequency. It is based on a so-called indirect approach, where the frequency of the disturbance is estimated in real-time,
and the estimate is used in a disturbance rejection scheme designed for a known frequency. Improvements over an earlier
algorithm include an extension to multi-channel systems, a better frequency estimation algorithm, and a thorough experimental
evaluation. For disturbance rejection, a so-called inverse G algorithm is proposed and its properties are compared through
analysis and experiments to those of a gradient algorithm. A new frequency estimator is also considered that is simple and
flexible in design, and is able to use multiple harmonics or multiple signals in order to estimate the fundamental frequency of
the noise source. In this manner, the algorithm maintains tracking of the fundamental frequency despite significant changes
in signal characteristics. The ability of the indirect approach to reject periodic noise with fixed or time-varying frequency and
amplitudes is demonstrated in active noise control experiments. The algorithm may also be useful in other control applications
where periodic disturbances of unknown frequency must be rejected.
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1 Introduction

1.1 Background

An active noise control (ANC) system eliminates or re-
duces noise through destructive interference [1]. In many
ANC applications, the noise of interest is narrowband.
This paper concentrates on multivariable feedback con-
trol of periodic noise which is composed of multiple har-
monics with a single fundamental frequency. Such kind
of noise may be generated by rotating engines, compres-
sors, fans, and propellers. The frequency of the noise is
not known exactly and may be slowly time-varying due
to slow changes in rotational speed. The amplitudes of
the sinusoidal components of the disturbances may also
be slowly varying.

There is a large volume of literature on active noise con-
trol with a reference signal (feedforward control). Two
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general approaches exist for the feedforward control of
periodic noise. In the first approach, which dates back to
Lueg’s original duct noise controller [2], a sensor picks up
an “upstream” reference signal that is closely correlated
to the primary noise. The reference signal is then used by
the controller to produce a proper control signal so that
the primary noise is cancelled or attenuated. The scheme
has several limitations, such as the possible feedback of
the control signal to the reference sensor. However, it
can control both broadband and narrowband noise [1].

Another approach exploits the predictable nature of
narrowband disturbances to synthesize an internally
generated periodic reference signal. The reference in-
formation, which is characterized by the fundamental
frequency of the noise, is obtained using a non-acoustic
sensor such as an accelerometer or tachometer [3]. Two
types of internally generated reference signals are com-
monly used in periodic noise control systems: (1) im-
pulse train with a frequency equal to the fundamental
frequency of the periodic noise [3] [4], and (2) sinusoidal
waveforms that have the same frequencies as the corre-
sponding harmonic tones to be cancelled. Noise control
for multiple sinusoidal components has been proposed
using the sum of the sinusoidal components as the ref-
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erence signal [5], designing control algorithms for each
frequency component independently [6] [7], or using
a rectangular waveform with the fundamental period
equal to the fundamental period of the noise [8].

The feedforward approaches work well in situations
where a reference signal is available that is well-
correlated with the primary noise, or when the noise
frequency can be easily measured using equipment such
as a tachometer mounted on the rotating machine that
is causing the noise. Nevertheless, in some situations,
it is undesirable or too expensive to use reference sen-
sors, and the information that characterizes the noise
can only be obtained from the error sensors. Then, a
feedback ANC system is needed.

While the rejection of periodic disturbances is a classi-
cal problem of feedback control when the frequency of
the disturbance is known, few algorithms exist for the
case when the frequency is unknown and possibly time-
varying. An early reference for feedback control of nar-
rowband noise is the patent of Chaplin and Smith [9],
which describes in broad terms the concept of an active
noise control system where the frequency of the noise is
estimated using a phase-locked loop. The patent does
not report analysis, simulation or experimental results,
and is not specific about the implementation. However,
[10] provides analytical and simulation results for a pos-
sible implementation of the concept.

In adaptive control, the terminology “indirect” usually
applies to an algorithm where the parameters of the sys-
tem are estimated, and inserted in a control algorithm
using a design procedure that assumes that the esti-
mates are exact. In analogy, Fig. 1 shows the concept of
an indirect approach for periodic disturbance rejection
which generalizes the approach of [9]. The frequency of
the noise is estimated, and the estimate is applied in a
scheme for the cancellation of noise of known frequency.
In the figure, d(t) is the effect of noise source at the sen-
sor location, u(t) is the control input, and e(t) is the
residual error signal picked up by the sensor. The plant is
given by P (s), which includes the dynamics of the sound
propagation from the control actuator to the sensor. The
frequency estimate of the noise signal is denoted by ω.
P̂ (s) is an estimate of the plant transfer function.

Recently, there have been a few attempts at implement-
ing indirect algorithms in active noise control. [11], [12],
and [13] report on experimental results obtained with
adaptive notch filters for frequency estimation. This pa-
per extends the indirect adaptive algorithm of [14] to
a multi-channel noise control system and proposes the
use of an alternate frequency estimation method. Ex-
perimental results show that, despite high initial uncer-
tainty, the indirect scheme is able to reduce significantly
the noise level at the microphone locations. Using the
alternate frequency estimation method, the algorithm is
also able to maintain consistent performance even when

P(s)
u(t)

d(t)
e(t)

ω Frequency 
Estimation

     Adaptive Algorithm for 
Noise with Known Frequency

P(s)

Fig. 1. Indirect approach (SISO Case)

the fundamental component of the measured signal be-
comes very small or zero.

1.2 Problem Statement

Assume that the effect of the noise is additive and that
the channels from the actuators to the sensors can be
described by a stable, linear time-invariant system with
transfer function matrix P (s). Pil(s) is the transfer func-
tion from control input (speaker) #l to residual error
(microphone) #i. It is assumed that the number of error
sensors I is greater than or equal to the number of con-
trol inputs L in the system, i.e., I ≥ L. This is a typical
situation in active noise control systems and many other
applications where sensors are cheaper than actuators.

It is assumed that suitable locations for the control
sources and the sensors are chosen, so that the system
frequency response matrix is of full rank (i.e., P(jω)
has L linearly independent rows) at the frequencies of
the noise signals. For that purpose, it may be assumed
that the frequency of the noise is known to lie in a cer-
tain range, through which the rank condition can be
tested. However, in a system with more sensors than ac-
tuators, the condition will typically be satisfied. Let us
define the symbols ul(t), ei(t), and di(t) as the control
signals, the sensor signals (or the plant outputs), and
the noise signals at the sensor locations, and pil(t) as
the impulse response of the channel transfer function
Pil(s). Defining the vector of error signals e(t), we have

e(t) =


p11(t) . . . p1L(t)
...

...
...

pI1(t) . . . pIL(t)

 ∗

u1(t)
...

uL(t)

+

d1(t)
...

dI(t)

 (1)

where ∗ denotes linear convolution.

The noise signals di(t) with i = 1, ..., I for different sen-
sor locations are assumed to contain multiple harmon-
ics associated with a single fundamental frequency, as is
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the case if the source of the disturbances is a rotating
machine. The noise signals are represented by

di(t) =
MX
m=1

©
πci,m cos [mαd(t)]− πsi,m sin [mαd(t)]

ª
(2)

for i = 1, 2, ..., I, where αd(t) = ωd · t, and ωd is the
fundamental frequency of the noise. For the purpose of
analysis, ωd, πci,m, and πsi,m are assumed constant. In
practice, the parameters may be slowly-varying. The or-
der of the highest harmonic to be cancelled, M , is as-
sumed to be finite and known.

The objective of the control system is to generate con-
trol signals ul(t) such that the effects of the disturbance
signals at the sensor locations are cancelled through de-
structive interference. If there are more sensors than ac-
tuators (i.e., I > L, and the system is said to be overde-
termined), exact cancellation may not be possible even
under ideal conditions.

2 Multi-Channel Adaptive Cancellation for
Sources of Known Frequency

2.1 Inverse G algorithm

Algorithms for the control of noises with known fre-
quency form the inner control loop of the indirect scheme
presented in this paper. We first consider an adaptive
algorithm that we call the inverse G algorithm. It is a
pseudo-gradient type of algorithm. In this algorithm, the
multiple control sources are given by

ul(t) =
MX
m=1

£
θcl,m(t) cos(mα(t))− θsl,m(t) sin(mα(t))

¤
(3)

for l = 1, 2, ..., L, where we assume that α(t) = αd(t).

To describe the algorithm in a compact form, let us de-
fine the control signal vector

u(t) =
h
u1(t) ... uL(t)

iT
. (4)

The corresponding cos and sin amplitude parameter vec-
tors for each harmonic are defined to be

θcm(t) =
h
θc1,m(t) ... θcL,m(t)

iT
θsm(t) =

h
θs1,m(t) ... θsL,m(t)

iT
(5)

for m = 1, 2, ...,M.

The parameter vectors θcm(t) and θsm(t) are then up-
dated according to"
θ̇
c

m(t)

θ̇
s

m(t)

#
= −g (ĜT

mĜm)
−1ĜT

m

"
e(t) cos(mα(t))

−e(t) sin(mα(t))

#
(6)

where g > 0 is an arbitrary adaptation gain. The 2I×2L
matrices Ĝm are estimates of the true plant matrices

Gm =
1

2

"
PR,m −PI,m
PI,m PR,m

#
(7)

and the elements ofGm are the plant frequency response
values estimated at the frequency of the mth harmonic
of the noise, i.e.,

P(jmω) =PR,m + jPI,m

=


P11(jmω) ... P1L(jmω)

... ... ...

PI1(jmω) ... PIL(jmω)

 (8)

In practice, the frequency response matrix of the plant
is estimated during a preliminary training phase using
appropriate signals.

The pseudo-inverse (ĜT
mĜm)

−1ĜT
m of the non-square

matrix Ĝm may be implemented using

(ĜT
m Ĝm)

−1ĜT
m = 4

"
(D̂m + ÊmD̂

−1
m Êm)

−1

−(D̂m + ÊmD̂
−1
m Êm)

−1ÊmD̂−1m

(D̂m + ÊmD̂
−1
m Êm)

−1ÊmD̂−1m
(D̂m + ÊmD̂

−1
m Êm)

−1

#
ĜT
m, (9)

with

D̂m = (P̂
T
R,mP̂R,m + P̂

T
I,mP̂I,m) = D̂

T
m (10)

and

Êm = P̂
T
R,mP̂I,m − P̂TI,mP̂R,m = −ÊTm (11)

Note that the inverse is well-defined under the assump-
tion made earlier that the plant frequency response ma-
trix has full row rank at the frequency of the mth har-
monic. In real-time implementation, the approximate in-
verse

(ĜT
mĜm)

−1ĜT
m ' 4

"
D̂m 0

0 D̂m

#−1
ĜT
m (12)
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may be used. The inverse is exact if

Êm = 0, or P̂TR,mP̂I,m = P̂
T
I,mP̂R,m. (13)

This property is satisfied in particular if, for a 2 × 2
system, P̂11(jmω) = P̂22(jmω), and P̂12(jmω) =

P̂21(jmω). These conditions may be viewed as “sym-
metry” conditions, in the sense that the behavior of the
system is the same if the order of the inputs and outputs
are permuted at the same time. However, experiments
show that the approximate inverse is useful even when
the symmetry conditions are not exactly satisfied.

2.2 Comparison with the Gradient Algorithm

Another commonly used adaptive algorithm for the can-
cellation of noise with known frequency is the gradient
(or FXLMS in [16]) algorithm. To control periodic noises
in a multi-channel system, the gradient algorithm de-
signed to minimize the error function J(t) = eT (t)e(t)
consists in"
θ̇
c

m(t)

θ̇
s

m(t)

#
= −gĜT

m

"
e(t) cos(mα(t))

−e(t) sin(mα(t))

#
. (14)

A minor adjustment was made to the standard gradient
algorithm: the responses of the plant to the in-phase
and quadrature components of the control signals were
replaced by the steady-state responses using the matrix
Ĝm. In other words, the plant was modeled by its gains
and phase shifts at the individual frequencies.

To compare the convergence properties of both adaptive
algorithms, we define the parameter error

φm =

"
θcm − θc∗m
θsm − θs∗m

#
, (15)

where the nominal values of the parameters are given by"
θc∗m
θs∗m

#
= −1

2
(GT

mGm)
−1GT

m

"
πcm

πsm

#
, (16)

with

πcm =
h
πc1,m(t) ... πcI,m(t)

iT
πsm =

h
πs1,m(t) ... πsI,m(t)

iT
(17)

for m = 1, 2, ...,M . An averaging analysis [15] then
shows that, for the inverse G algorithm, the dynamics of
the averaged parameter error are given by

φ̇av,m = −g(ĜT
mĜm)

−1ĜT
mGmφav,m. (18)

If there is no modeling error and the frequency estimate
is equal to the true value, Ĝm =Gm and we have

φ̇av,m = −gφav,m. (19)

The result shows that, for small enough g, the stability
of the adaptive system is guaranteed, and that the adap-
tive parameters in θcm and θsm converge with identical
speeds to their nominal values. The convergence speed
is determined by the adaptation gain g and is indepen-
dent of the plant response for different noise frequencies.
The price to pay for the desirable convergence proper-
ties is that the pseudo-inverse of the matrix Ĝm, for
m = 1, 2, ...,M, requires intensive computations when
the number of the control signals is large.

For the gradient algorithm, the dynamics of the averaged
parameter error are given by

φ̇av,m = −g(ĜT
mGm)φav,m. (20)

In the absence of modeling error and frequency error,
Ĝm =Gm, and we have

ĜT
mGm = Ĝ

T
mĜm =

1

4

"
D̂m ÊTm

Êm D̂m

#
. (21)

Because the matrix ĜT
mĜm is symmetric and posi-

tive definite, the adaptive parameters converge to their
nominal values for small enough gain and under ideal
conditions. The convergence properties of the adap-
tive weights θcm and θsm depend on the multi-channel
plant response at the frequency of the mth harmonic
of the noise. For systems in which the matrix ĜT

mĜm

is ill-conditioned (i.e., the eigenvalues of the matrix
have a wide range of values), the convergence of the
algorithm is slowed down by the modes associated with
small eigenvalues, since the adaptation gain must be
kept small enough that the modes associated with large
eigenvalues remain stable.

The distribution in eigenvalues for a given freqeuncy is
related to the spatial positioning of the control sources
and the error sensors. If the noise frequency varies, there
will be a variation of the eigenvalues with time, which
may be significant if the magnitude responses of the
plant transfer functions have strong peaks and valleys
as is often the case in active noise control in an enclo-
sure. Convergence properties of the gradient algorithm
will be further degraded. However, the advantage of the
algorithm is that the matrix inverse is not required.

2.3 Normalized Gradient Algorithm

The inverse G algorithm with approximate inverse was
defined by (6) and (12). The algorithm may be viewed
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as a normalized form of the gradient algorithm (14). The
computational requirement of the matrix inverse can be
further reduced by approximating D̂m by its diagonal,
whose elements are

D̂ll,m '
IX
i=1

|Pil,m(jmω)|2 (22)

The approximation normalizes the gradient algorithm,
resulting in more consistent convergence performance
along the spectral dimension, while the spatial variation
is not addressed. The normalized algorithm is a trade-
off between the inverse G algorithm and the gradient
algorithm.

3 Frequency Estimation Method

3.1 Frequency Estimation Signal

The effect of the control signals is subtracted from the
error signal before the resulting signal y1(t) is used to
estimate the frequency, as illustrated in Fig. 2 for a 2-
channel noise control system. In the figure, P̂11(s) and
P̂12(s) are the estimates of the plant transfer functions
P11(s) and P12(s), respectively, and ω is the estimated
fundamental frequency of the noise. It was found that,
unlike internal model control (IMC) [17] [18], the esti-
mates of the plant transfer functions did not have to be
precise in order for this approach to work well.

P   (s)11

P   (s)21

P   (s)11

P   (s)21

u  (t)1
d  (t)1

u  (t)2

e  (t)1

e   (t)1u

^

^

Frequency 
 Estimator

ωy (t)1

Fig. 2. Construction of frequency estimation signal

3.2 Adaptive Notch Filter

An adaptive notch filter [19] transposed to continuous-
time form was used to estimate the frequency of a sinu-
soidal signal in [14]. The continuous-time notch filter is
given by:

N(s) = k
s2 + ω2

s2 + 2ζωs+ ω2
, (23)

where k is the filter gain and ζ is the damping factor
that determines the bandwidth of the filter’s notch. The
sinusoidal signal is filtered through the notch filter, while

the notch frequency ω is adapted to minimize the output
of the notch filter. The adaptive notch filter is described
by differential equations with three states ω, x1, and x2:

ẋ1 = x2
ẋ2 =−2ζωx2 − ω2x1 + ky1
ω̇ =−g1(ky1 − 2ζωx2)x1 (24)

where g1 is the adaptation gain. The algorithm’s be-
havior was explained through an averaging analysis in
[14], assuming a small value of g1. It was found that
the frequency estimate ω converged without bias to the
true value when y1(t), which is one of the sensor signals
processed in the way as shown in Section 3.1, contained
a single sinusoid. When the input y1(t) contained multi-
ple sinusoids, the frequency estimate ω converged to the
most significant frequency that was in the vicinity of the
initial value of ω. The estimation bias depended on the
damping factor ζ, and the bias tended to zero as ζ → 0.

3.3 Phase-Locked Loop

α
αsin

2g
s

Kf + 1
s

ω ωy1 y1ω

Fig. 3. Frequency estimation based on phase-locked loop

The phase-locked loop technique [20] is simple and ef-
fective for estimation and tracking of time-varying fre-
quency [21]. Fig. 3 shows a phase-locked loop described
by

α(t) =Kfω(t) +

tZ
0

ω(τ)dτ ,

ω̇(t) = 2gωy1(t)(− sin(α(t))). (25)

The design parameters Kf and gω are both positive.
Note that the phase α is not purely integrated from the
frequency estimate ω, as is usually done in phase-locked
loops [20]. The additional proportional term with gain
Kf provides the phase lead that is typically incorporated
through a lead filter.

If the high frequency terms of the variable y1ω are dis-
carded, and the frequency estimate ω is close enough to
the fundamental frequency ωd, the dynamics of the lin-
ear approximate of the loop are those of a second-order
system with poles determined by the roots of

s2 + gωm1dKfs+ gωm1d = 0, (26)

where m1d is the magnitude of the fundamental compo-
nent of the signal. Stability is guaranteed as the values
of Kf and gωm1d are both positive.
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3.4 Modified Phase-Locked Loop

In the above estimator, only the information obtained
from the fundamental component of one signal is used.
However, in some situations, the fundamental compo-
nent of the signal may become small for some frequen-
cies. In active noise control in a confined environment,
the transfer function of a primary plant (from a noise
source to a microphone) often exhibits zeros of transmis-
sion (exact or approximate) at certain frequencies. Any
component of the noise signal at the microphone may
therefore disappear temporarily as the fundamental fre-
quency of the noise varies. [12] proposes a frequency es-
timation algorithm using a cascade adaptive notch filter
to solve the problem. The algorithm rejects erroneous
estimation results caused by the disappearance of some
noise components using decision rules. In contrast, the
algorithm discussed here uses the integral factors be-
tween the frequencies of the harmonics so that the mul-
tiple components all contribute to a single frequency es-
timate. The information provided by multiple compo-
nents is combined, and no decision rules are required. As
transmission zeros from a noise source to different mi-
crophones usually occur at different frequencies, perfor-
mance improvement may also be achieved by combining
different microphone signals in the frequency estimation.

α2g
s

K f

1
s

2g
s

φ

ω

y

y
K f

1
N N

α

ω1ω

φ

αsin

y1

αsin

y2

1ω

2ω N

N

N

Fig. 4. Frequency estimation based on a modified PLL

Fig. 4 shows a modified phase-locked loop for such pur-
pose [22]. The algorithm uses the fundamental compo-
nent of y1 and the Nth harmonic of y2 in the frequency
estimation. For N = 1, the figure shows an algorithm
that uses the fundamental components of two micro-
phone signals y1 and y2. For y1 = y2, N 6= 1, the figure
shows an algorithm that uses the fundamental and the
Nth component of one microphone signal y1. Extension
to arbitrary combinations of signals and/or harmonics
may easily be derived. The equations for Fig. 4 are

y1ω = y1(− sin(α)), y2ω = y2(− sin(αN ))

ω̇1 = 2gωy1ω, φ̇N = 2gφy2ω, ω = ω1 +
1

N
φN

α=Kfω1 +

tZ
0

ωdt, αN = KfφN +N

tZ
0

ωdt, (27)

where the design parameters Kf , gω, and gφ are all pos-
itive.

Analysis [22] shows that the dynamics of the linear ap-
proximation of the loop are those of a third-order sys-
tem, with poles determined by the roots of

(s+ gω m1dKf )(s
2 + gφmNdKfs+ gφmNd)

+gωm1d(s+ gφmNdKf ) = 0, (28)

where mNd is the magnitude of the Nth component of
y1. Application of the Routh-Hurwitz test shows that
the closed-loop poles are stable for all positive values of
Kf , gω, and gφ. Some prior knowledge about the value
range of m1d and mNd is useful to guarantee the de-
sired performance of the system. If gω and gφ are chosen
such that gωm1d = gφmNd, the characteristic equation
is given by

(s+ gωm1d Kf )(s
2 + gωm1d Kfs+ 2gωm1d ) = 0, (29)

which helps to place the poles appropriately.

If one of the two components vanishes, the dynamics of
the estimator reduce to those of the phase-locked loop
method of Section 3.3 that is based solely on the non-
zero component. The combination of the multiple com-
ponents of different microphone signals in the frequency
estimation makes the estimator more flexible, as it is not
necessary to know a priori which component exists or is
the most suitable to base the estimation on. The modi-
fied algorithm is especially useful when the magnitudes
of the noise signals change with time.

4 Experimental Testbed and Plant Modeling

The schemes for rejection of periodic signals were imple-
mented on an experimental active noise control system
developed at the University of Utah. The algorithm was
coded in the assembly language of Motorola’s DSP96002
32-bit floating-point digital signal processor hosted in
a PC. The sampling rate was set at 8 kHz. A single
bookshelf speaker with a 4-inch low-frequency driver
generated the periodic signal constituting the noise
source. The signals were collected by two microphones
separated by about 2.7 ft (0.82m). These signals were
passed through anti-aliasing filters and sampled by self-
calibrating 16-bit analog-to-digital converters before
being sent to the DSP system. The controller output
signals were sent to two noise cancelling speakers posi-
tioned symmetrically with respect to the microphones.
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The whole system was set at about 2 ft (0.61m) in
height in a small room.

The algorithms require knowledge of the frequency re-
sponse matrix P(jω) of the plant for the frequency esti-
mation as well as for the adaptive cancellation. Assum-
ing that the characteristics of P(jω) are time-invariant
but unknown, measurements can be used to estimate
P(jω) during an initial training stage. At the end of the
training interval, the estimated model P̂(jω) is fixed and
used for disturbance rejection operation. The frequency
response at a given frequency ω0 was determined by the
Empirical Transfer Function Estimate (ETFE, [23]). Let
the first input (produced by control speaker #1) be a
pure sinusoid cos(ω0n) and the second input (produced
by control speaker #2) be zero. P̂1(jω0), which is the
first column of P̂(jω0), was obtained through

Re
³
P̂1(jω0)

´
=
2

N

NX
n=1

E(n) cos(ω0n)

Im
³
P̂1(jω0)

´
= -

2

N

NX
n=1

E(n) sin(ω0n) (30)

where E(n) is the vector of plant outputs, and N =
kπ/ω0 with k = 1, 2, 3.......

The second column of P̂(jω0)may be obtained similarly.
In the implementation of the algorithm, it was assumed
that P11(jω) = P22(jω), and P12(jω) = P21(jω), even
though the real plant did not satisfy the symmetry re-
quirement. This assumption need not be made in gen-
eral, but the complexity of the code is reduced if the as-
sumption is used. In the experiment, the real and imag-
inary parts of the frequency response were obtained at
64 different frequencies, spaced between 90 Hz and 375
Hz, and the results were saved in a look-up table. In
real-time operation, the frequency response at the esti-
mated frequency was obtained by linearly interpolating
the look-up table, and the matrices Ĝm were adjusted
continuously as functions of the frequency estimate.

The phase responses of the plant mostly consisted of
the linear phase associated with the delay due to sound
propagation from the speakers to the microphones. The
magnitude responses showed a significant number of
peaks and valleys, which were attributed to acoustic
resonances in the small room that was used for ex-
perimentation. At valley frequencies, the actuator of a
single-channel control system needs a control output of
high volume in order to cancel the noise. The actuator
may become saturated and cause a stability problem.
A solution to this problem is to use a multi-channel
control system such as developed in this paper.

5 Experimental Results

5.1 Comparison of Frequency Estimation Algorithms

The inverse G algorithm was implemented as the in-
ner loop of the indirect scheme, using the approximate
inverse of the matrix Ĝm given by equation (12). The
noise signals contained a fundamental and a 2nd har-
monic. First, the fundamental frequency was fixed at
130 Hz. The experimental results showed that the al-
gorithm, combined with any one of the three frequency
estimation methods, reduced both noise signals consid-
erably within one second after the control effort was en-
gaged. The periodic components of the two noise signals
were completely eliminated. In a different experiment,
the fundamental frequency of the noise was increased
linearly from 130 Hz to 150 Hz in 10 seconds. Due to the
acoustic properties of the room, the amplitudes of the
noise signals at the two microphone locations changed
as a function of frequency. The design parameters of the
control algorithm were chosen to maximize the tracking
speed, while keeping the adaptive system stable. Over-
all, the contribution of the fundamental component was
reduced by approximately 25 dB, and the 2nd harmonic
by 18 dB using the adaptive notch filter, and approxi-
mately 40 dB and 20 dB using the phase-locked loop and
the modified phase-locked loop.

5.2 Comparison of Inner Control Loop Algorithms

For comparison, the gradient algorithm and the normal-
ized gradient algorithm were also implemented as the
inner control loop algorithm of the indirect scheme. The
adaptive notch filter was used to estimate the frequency
in this comparison. Table 1 shows the steady-state noise
reductions. When the noise frequency was constant, the
inverse G algorithm had better noise reductions than
the gradient algorithm, and the convergence speed was
faster (the inverse G algorithm converged in less than
1 second, while the gradient algorithm converged in 2
seconds). When the noise frequency was increasing lin-
early, the parameters of the gradient and the normalized
gradient algorithms were also chosen to maximize the
tracking speed, while keeping the adaptive system sta-
ble. Again, the inverse G algorithm had better noise re-
duction performance than the gradient algorithm. The
performance of the normalized gradient algorithm was
intermediate, and was more consistent for varying fre-
quencies, although not as good as the inverse G algo-
rithm.

5.3 Experimental Results with Approximate Transmis-
sion Zero

To demonstrate the benefits of themodified phase-locked
loop in some special situations, experiments were con-
ducted where the fundamental component of the sig-
nal became very small. The noise produced by the noise
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Freq. Signal Comp. Inv. G Grad. Norm.

#1 fund. 44 dB 19 dB 33 dB

Constant 2nd 38 dB 24 dB 28 dB

#2 fund. 40 dB 19 dB 32 dB

2nd 30 dB 18 dB 25 dB

#1 fund. 25 dB 15 dB 20 dB

Linear 2nd 18 dB 5 dB 10 dB

Increase #2 fund. 28 dB 18 dB 24 dB

2nd 18 dB 3 dB 10 dB
Table 1
Noise reductions using different inner control loop algorithms
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Fig. 5. Noise signals with linear frequency and frequency
tracking – approximate zero of transmission encountered at
3 seconds

speaker contained only a fundamental component with
a frequency linearly increasing from 208 Hz to 228 Hz in
10 seconds. Fig. 5 (A) shows the noise signals observed
at microphone locations #1 and #2 when the control ef-
fort was not applied. The amplitudes of the noise signals
at the two microphone locations changed slowly, even
though the amplitude of the noise source was fixed. The
noise signal at microphone #1 became very small tem-
porarily at about 3 seconds, while the noise at micro-
phone #2 location was still significant. An approximate
zero of transmission from the noise source to microphone
#1 occurs at around 214 Hz, while the response to mi-
crophone #2 does not have a zero at the same frequency.

Fig. 5 (B), (C), and (D) show the frequency estimates ob-
tained using the adaptive notch filter, the phase-locked
loop, and the modified phase-locked loop, respectively.
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Fig. 6. Spectra of noise signals and their residuals with dif-
ferent frequency estimation methods

In the modified phase-locked loop, noise signal #2 was
used together with noise signal #1 in the fundamental
frequency estimation. The performance of the frequency
tracking is excellent, despite the changing amplitude of
the noise signal #1. The experiments demonstrate the
ability of the modified phase-locked loop to use multi-
ple signals in order to better estimate the fundamental
frequency.

Fig. 6 shows the spectra of the noise signals and the cor-
responding residual error signals obtained from micro-
phones #1 and #2. The signals after 1.5 seconds were
used in the spectral analysis in order to compare the
performance of the control system with different fre-
quency estimation methods. The noise signals shown
in the spectra have, therefore, significant spectral band
from 211Hz to 228Hz.The figure shows that the indirect
scheme with the adaptive notch filter had the least noise
reduction. The indirect schemes with the phase-locked
loop and the modified phase-locked loop were both effec-
tive overall. The scheme with the modified phase-locked
loop had somewhat better performance. Its transient re-
sponse in the first second of the experiment was also
superior to that of the phase-locked loop. Experiments
were also conducted where the design parameters were
varied within some range while the stability of the con-
trol system was maintained. It was found that the above
experimental results were typical for the indirect scheme
with each of the three frequency estimation methods.

5.4 Experimental Results with Vanishing Fundamental

An even more extreme situation was considered, where
the fundamental was made to vanish for some period of
time. In the experiments, the control algorithm was en-
gaged after 1 second. The noise contained the fundamen-
tal and 2nd harmonic component, until after 5 seconds
when the fundamental component became zero. The fun-
damental frequency of the noise was fixed at 130 Hz.
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Since the adaptive notch filter and the phase-locked loop
both estimate the frequency using information obtained
from the fundamental component, they may be expected
to have inferior performance compared to the modified
phase-locked loop, which exploits information obtained
from the fundamental and the 2nd harmonic component
of the noise. The experiments of this section confirm this
statement.

Fig. 7 shows the frequency estimates using the adap-
tive notch filter, the phase-locked loop, and the mod-
ified phase-locked loop. The frequency estimate using
the adaptive notch filter was biased and attracted to the
frequency of the 2nd harmonic after 5 seconds. The fre-
quency estimate using the phase-locked loop also drifted
away from the fundamental frequency of the noise after
5 seconds. In the modified phase-locked loop, the 2nd
harmonic of microphone signal #1 was used together
with the fundamental component for frequency estima-
tion. The second microphone signal was not used for fre-
quency estimation. The estimate of the modified phase-
locked loop keeps lock on the fundamental frequency of
the noise even when the fundamental component disap-
peared.

Table 2 shows the steady-state power levels of the resid-
ual error signals. In the table, stage #1 denotes the ex-
periment stage from second 1 to 5. Stage #2 means the
time period from second 5 to 10. The approximate noise
levels before the control effort was engaged is shown in
the 3rd column of the table. The background noise of
the signals was about −50 dB, so a power level of −55
dB of some component means that the component was
completely eliminated or did not exist.

As shown in the table, the indirect scheme with the

Stage Signal Component ANF PLL MPLL

(original dB) (dB) (dB) (dB)

#1 fund. (1 dB) -32 -55 -55

#1 2nd (-1 dB) -37 -55 -50

#2 fund. (-1 dB) -34 -55 -55

2nd (-10 dB) -40 -50 -55

#1 fund. (-55 dB) -55 -55 -55

#2 2nd (-1 dB) -20 -13 -50

#2 fund. (-55 dB) -55 -55 -55

2nd (-10 dB) -23 -16 -55
Table 2
Noise levels using different frequency estimation methods

modified phase-locked loop was able to eliminate com-
pletely the noise at the two microphone locations, for
both stages. The schemes with the adaptive notch filter
and the phase-locked loop were not as effective in the
noise reduction in stage #2, although they were able to
eliminate the noise in stage #1. The non-ideal perfor-
mance of the scheme with the adaptive notch filter at
stage #1 shown in the table was due to the slow con-
vergence caused by the small value of g1. Increasing the
value of g1 increased the convergence rate and thereby
the noise reduction at stage #1. However, the frequency
estimation bias at stage #2 was larger and eventually
led to instability.

6 Conclusions

A feedback active noise control algorithm was presented
for multi-channel systems and periodic noise of unknown
frequency. The fundamental approach of the proposed
indirect control scheme consisted in estimating the fre-
quency of the noise and using the estimate in an adaptive
noise control scheme designed for a known frequency. For
the inner control loop, an adaptive algorithm called in-
verse G algorithm was proposed and its properties were
compared through analysis with those of a gradient al-
gorithm. It was found that the convergence speed of
the gradient algorithm was limited by the conditioning
number of the plant frequency response matrix, while
the inverse G algorithm avoided the problem by intro-
ducing the pseudo-inverse of the matrix in the adap-
tive algorithm. As a result, the inverse G algorithm con-
verged faster and had better disturbance attenuation
performance, especially when the frequency of the dis-
turbances was time-varying. However, the gradient al-
gorithm had the advantage of lower computational com-
plexity, especially when the number of the control actu-
ators was large. A normalized gradient algorithm pro-
vided an intermediate solution, both in terms of compu-
tational complexity and disturbance reduction perfor-
mance.

For the frequency estimation, a modified phase-locked
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loop was used that was capable of estimating the fre-
quency of the noise signal even when some component
of the signal vanished or became small for some peri-
ods of time. An attractive feature of the algorithm was
that it could combine information obtained from multi-
ple harmonics and/or sensors. Overall, the experimental
results showed that the indirect approach was efficient in
the multi-channel rejection of periodic noise with fixed
or time-varying frequency.
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