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ABSTRACT

The paper discusses the results of a series of �ight tests in which the performance

of a real�time parameter identi�cation algorithm was evaluated� The identi�cation

algorithm was combined with an automatic control design procedure in order to

obtain control recon�guration capabilities� Signi�cant challenges were encountered

because of the poor information content of the signals used for identi�cation and

because of the requirements for autonomy� reliability� and fast adaptation� A mod�

i�ed sequential least�squares algorithm was used for identi�cation� The algorithm

is presented in the paper� and its advantages are discussed� together with the solu�

tions that were developed to address the problems posed by the speci�c application�

Typical parameter identi�cation results from the �ight tests are shown� The �ight

tests culminated in a successful landing of the aircraft under a simulated missing

elevon� demonstrating the value of the methods under investigation�
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�� INTRODUCTION

A goal of modern �ight control research is improved aircraft survivability and enhanced

robustness of aircraft responses to a wide array of anomalous operating conditions� The

emphasis on robustness has led to studies of recon�gurable control� which is intended to

provide rapid adaptation to control e�ector and airframe damage� imperfect characterizations

of aircraft performance in new �ight regimes� and less traumatic events such as release of

stores or gradual component aging� A notable milestone in the development of recon�gurable

control systems was the �ight testing of the so�called Self�Repairing Flight Control System

	�
� This system implemented a failure detection and identi�cation approach to the problem�

An alternative approach is based on adaptive control techniques� which do not require prior

assumptions about the nature and characteristics of failures�

During the summer of ����� a series of �ight tests demonstrated an adaptive approach

to recon�gurable �ight control called self�designing controller 
SDC�� This indirect adap�

tive control architecture computed a time�varying model of the aircraft dynamics and com�

municated the results to an optimal control module� This module computed the e�ector

commands required to achieve the desired aircraft responses as speci�ed by a set of �ying�

qualities models� The SDC was found to be able to recon�gure rapidly after single or multiple

impairments� thus making e�ective use of residual e�ector authority and greatly enhancing

aircraft survivability� At the core of the algorithm was a novel on�line system identi�cation

technique that could rapidly track time�varying parameters and was robust to adverse con�

ditions such as low excitation or correlated inputs� The objective of this paper is to present

the algorithm and the results of its implementation in the �ight tests�

Parameter identi�cation of aircraft dynamics has long been a subject of interest in the

aerospace community 
see� e�g�� 	�
� 	�
� 	�
�� Problems such as identi�cation of nonlinear

dynamics 	�
 and reliable error analysis 	�
 continue to make it an area of active research

today� The problem of parameter identi�cation for recon�gurable �ight control is similar�

but brings additional di�culties� which may be categorized as follows�
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� Lack of control over the actuator signals� A signi�cant di�culty arises when the actuator

signals are determined by a control law and cannot be freely selected� It has been

shown that considerable improvements in identi�cation performance can be obtained

through optimization of the signals applied to the control surfaces 	�
� Conversely� in a

recon�gurable control application� the signals exhibit highly undesirable characteristics�

including�

�� high levels of correlation between the control signals and the aircraft states 
in

particular for linear state feedback control laws��

�� long periods of quiescence 
e�g�� in steady �ight��

�� highly coupled longitudinal and lateral motions 
in particular for rapid roll maneu�

vers��

�� excitation of nonlinear dynamics 
for example inertial couplings��

In addition� because the control signals are determined by a control law which� itself�

depends on the identi�cation results� adverse interactions are sometimes induced be�

tween the identi�cation and the control components of the system� further aggravating

the problem�

� Increased number of parameters for failed aircrafts� Aircrafts often loose their symme�

try after failures� requiring that more parameters be identi�ed� For example� the roll

e�ectiveness of a symmetric tail de�ection may be assumed to be zero for an unfailed

aircraft� but not otherwise� In general� accounting for possible failures may prevent the

ganging of some surfaces� such as spoilers� and result in a signi�cant increase in the

number of parameters to be identi�ed�

� Real�time operation� The computational requirements of a parameter identi�cation

scheme for recon�gurable control must be compatible with available computers� Fur�

ther� the procedure must be performed with minimal supervision and may not require
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extensive trial and error adjustments by the pilot�

In summary� the problem of identifying aircraft parameters poses considerable problems

when real�time operation under feedback is required� This paper discusses solutions to these

problems and the results of the implementation of the solutions in �ight tests�

�� EQUATIONS OF MOTION AND PARAMETERIZATION FOR

IDENTIFICATION

��� Equations of Motion

This section considers the nonlinear equations of motion of an aircraft� We begin with the

nonlinear wind�axes equations of motion

�Vt �
�

m

Tx cos� cos� �D� � gD 
��

�� �
�

mVt

Ya � Tx cos� sin�� � p sin� � r cos��

gYa
Vt


��

�� � �
�

mVt cos�

L� Tx sin�� � q � tan � 
p cos� � r sin�� �

gL
Vt cos�


��

where Vt is the aircraft velocity� m is the mass of the aircraft� Tx is the component of the

thrust along the body x�axis� � is the angle of attack� � is the angle of sideslip� D is the drag


along the negative wind x�axis�� gD is the component of the gravitational acceleration along

the wind x�axis� Ya is the lateral force 
along the wind y�axis�� 
p� q� r� is a vector of body�

axes rotational rates� gYa is the component of the gravitational acceleration along the wind

y�axis� L is the lift force 
along the negative wind z�axis�� and gL is the component of the

gravitational acceleration along the wind z�axis� For this work� we followed the ANSI�AIAA

recommended practice of using wind�axes forces 	�
� The components of the gravitational

acceleration are given by gD � �g� sin �� gYa � g� cos � sin�� gL � g� cos � cos�� where g�

is the acceleration of gravity� � is the �ight path angle� and � is the bank angle 
about the

velocity vector��

The angular equations of motion are resolved in the body 
not wind� axes system� These
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equations are given by

� �p � Izz �L� Ixz �N � Ixz 
Ixx � Iyy � Izz� pq �
�
Izz 
Iyy � Izz�� I�xz

�
qr 
��

Iyy �q � �M � 
Izz � Ixx� pr � Ixz
�
r� � p�

�

��

� �r � Ixz �L� Ixx �N �
�
Ixx 
Ixx � Iyy� � I�xz

�
pq � Ixz 
Ixx � Iyy � Izz� qr 
��

where � � IxxIzz � I�xz� Iii is a moment of inertia� Iij is a body�axes product of inertia�

�L is the rolling moment� �M is the pitching moment� and �N is the yawing moment� It is

assumed that Ixy and Iyz are negligible� which may not always be valid for recon�gurable

�ight control� but is appropriate in most cases�

The forces and moments acting on the aircraft are functions of the aerodynamic angles� �

and �� of the body�axes angular rates� p� q� and r� and of the e�ector positions� For the F���

aircraft that was used in the �ight tests� the e�ectors are �tl 
left tail or elevon�� �tr 
right tail

or elevon�� �fl 
left trailing�edge �ap or �aperon�� �fr 
right trailing�edge �ap or �aperon��

and �rud 
rudder�� The F��� e�ector suite also includes leading�edge �aperons� However�

de�ections of these surfaces are scheduled as functions of the aircraft�s angle of attack in the

standard F��� 
Block ��� control law� and the variables were not assumed to be available for

control recon�guration� Another command that was not used for control recon�guration was

the symmetric �aperon command� As a result� the following pseudo�e�ectors were considered

�ts � symmetric tail 
��

�ta � asymmetric tail 
��

�fa � asymmetric �aperon 
��

�rud � rudder 
���

��� Parameterization for Identi�cation

For identi�cation� it is necessary to represent the uncertain forces and moments of the

equations of motions in terms of parameters to be determined� While one may choose

to identify nondimensional stability and control derivatives� it was preferred to identify
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lumped� dimensionalized coe�cients� The relationship between the dimensional coe�cients

and the standard� nondimensional derivatives is given in Appendix� While the dimensional

parameters vary with Mach number and dynamic pressure� the variations are slow relative

to the states and the computations were found to be simpli�ed in this manner�

For identi�cation purposes� the equations of motion are divided into separate pitch and

roll�yaw equations

�xlon �NLlon
p� q� r� �� �� � �Tlon	lon 
���

�xlat �NLlat
p� q� r� �� �� � �Tlat	lat 
���

where xTlon � 	q� �
 and xTlat � 	p� r� �
� NLlon
p� q� r� �� �� and NLlat
p� q� r� �� �� represent

the nonlinear terms due to inertial cross�couplings and gravitational e�ects� and are given

by

NLlon
p� q� r� �� �� �

�
�� NLq

NL�

�
�� �

�
��

�Izz�Ixx�
Iyy

pr � Ixz
Iyy


r� � p��

q � tan � 
p cos �� r sin�� � gL
Vt cos�

�
�� � 
���

NLlat
p� q� r� �� �� �

�
������
NLp

NLr

NL�

�
������ �

�
������

Ixz�Ixx�Iyy�Izz�
�

pq �

Izz�Iyy�Izz��I�xz�

�
qr


Ixx�Ixx�Iyy��I�xz�
�

pq � Ixz�Ixx�Iyy�Izz�
�

qr

p sin�� r cos� � gYa
Vt

�
������ 
 
���

	lon and 	lat are vectors of observations� called regressors� which consist of aircraft states�

e�ector positions� and a bias term� with

	Tlon � 	q� �� �ts� �ta� �
 � 	Tlat � 	p� r� �� �ts� �ta� �fa� �rud� �
 
 
���

�lon� �lat are matrices of parameters to be identi�ed

�Tlon �

�
�� �Tq

�T�

�
�� �

�
�� �qq �q� �qts �qta �q�

��q ��� ��ts ��ta ���

�
�� � 
���

�Tlat �

�
������
�Tp

�Tr

�T�

�
������ �

�
������
�pp �pr �p� �pts �pta �pfa �prud �p�

�rp �rr �r� �rts �rta �rfa �rrud �r�

��p ��r ��� ��ts ��ta ��fa ��rud ���

�
������ 
 
���

Several comments are worth pointing out� regarding the parameterization�
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� Although the equations are separated into longitudinal and lateral equations� the longi�

tudinal and lateral variables appear in both equations� In other words� the formulation

does not constitute an assumption of separation of longitudinal and lateral dynamics�

but rather an assumption of which variables a�ect the longitudinal and lateral acceler�

ations� In particular� it is assumed that the asymmetric �aperon does not produce any

pitching acceleration� On the other hand� a symmetric tail command may produce a

rolling moment 
considering a possible failure�� It is assumed that the two longitudinal

accelerations are a�ected by the same variables� and that the three lateral accelerations

are also a�ected by the same variables� although the two sets are di�erent� As we will

see in the next section� the grouping of the longitudinal and lateral equations saves

computations�

� The last parameter of each row of the parameter matrices is a bias term that represents

the forces or moments that are not represented by the other parameters� It includes

trim�related variables of the aircraft� and also unmodelled e�ects such as those related to

Mach number and the slow states� In a similar way� the e�ect of �fs� which is commanded

as a 
mostly� linear function of angle of attack� is contained in the ��derivatives and

the bias terms�

� The equations are linearly parameterized� meaning that the unknown parameters ap�

pear linearly in the equations� This makes possible the use of e�cient least�squares

algorithms� However� the equations of motions are nonlinear� It is also possible to

represent nonlinear variations with respect to angle of attack by including terms such

as ��� ��� in the regressor variables�

� For control purposes� the nonlinear portion 
NL� of the equations of motion given in


���� 
��� may be linearized to obtain a linear state�space model� This state�space

model is given in Appendix� Note that the result is a set of equations with coupled

longitudinal and lateral dynamics�
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� The nonlinear kinematic and gravitational terms are accounted for explicitly because

these terms may vary rapidly with time 
that is� as rapidly as the states themselves

vary�� and because their contribution is sometimes signi�cant� Indeed� Fig� � shows the

relative importance of two nonlinear e�ects� as observed from �ight test data� On the

top is a plot showing �q as a solid line� and pr
Izz�Ixx��Iyy�
r��p��Ixz�Iyy as a dashed

line� On the bottom is a plot showing ��� q as a solid line� and tan �
p cos�� r sin��

as a dashed line� In both cases� one �nds that nonlinear e�ects account for a visibly

signi�cant portion of the signal for a long period of time� If neglected in the context of an

adaptive identi�cation algorithm� such e�ects could signi�cantly perturb the responses

of the parameters� Situations such as shown in Fig� � are not very frequent but not

unusual either� In the case of the plot on the top� the roll rate reached approximately

�� deg�s and the yaw rate reached �� deg�s� In the case of the plot of the bottom� the

angle of sideslip reached � degrees� the roll rate reached �� deg�s and the yaw rate �

deg�s� In other words� the maneuvers were not particularly aggressive�

� Finally� an option would have been to identify terms such as 
Izz � Ixx��Iyy in the algo�

rithm� Although the inertia terms vary signi�cantly with loading and �ight condition�

it was found that the ratios were relatively constant� and nominal values were used in

order to reduce the number of parameters�

�� REGULARIZED PARAMETER IDENTIFICATION ALGORITHM

��� The Modi�ed Sequential Least Squares Algorithm

In the previous section� the equations of motion were cast in a set of equations of the form

y � ��
T

	 
���

where y and 	 are vectors of measured variables� and �� is a matrix of unknown parameters�

Each column of � contains the parameters corresponding to one of the components of the

vector y� There are two signi�cant di�culties with the on�line estimation of the aircraft

parameters� namely data collinearities and time�varying parameters�
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Data collinearities occur when any of the variables of the vector 	 can be represented as a

linear combination of the other variables� In such case� the contributions of the components

of �� may not be determined in a unique manner� Such condition can be caused by� 
�� trim

�ight conditions where the surface and state commands are constant� 
�� constant linear

state feedback where the e�ector commands are a linear combination of the states� or 
��

 ganged! e�ectors 
e�g�� combination of asymmetric �ap and asymmetric tail to generate

rolling moment�� These collinearities are all cases of insu�cient excitation and may lead

to divergence of the parameters in an adaptive algorithm and in the presence of noise� A

solution to the problem consists in extending the memory of the algorithm over periods of

time that are long enough that su�cient information is available�

Time�varying parameters result from changes in �ight condition 
slow variations� or dur�

ing impairment� stores release� or other abrupt changes 
fast variations�� The presence of

time�varying parameters translates into the need for rapid adaptation and� therefore� the

need for short memory length� However� this requirement is contradictory to the need of

stretching the memory of the algorithm long enough to get uncorrelated data�

To overcome the problem of identifying time�varying parameters in a system which is often

insu�ciently excited� a modi�ed sequential least�squares 
MSLS� algorithm was developed

	�
� The parameter identi�cation algorithm incorporates constraints to prevent numerical

di�culties that occur when data windows are small enough to track varying parameters�

The constraints are added to a standard squared�error cost function with forgetting� to yield

J
�
t�� �
�

�

tX
k�t�

�t�kky
k�� �
t�T	
k�k� �



�
kW 	��

� 
K
t��M�
t�� k� 
���

where y � �o�	� 	 � �n�	 are vectors of measured signals� � � �n�o is a matrix of estimated

parameters� n is the number of parameters per output y� and o is the number of signals in

y� k
k is the Euclidean norm and �
� � � � �
� is the  forgetting factor! used to discount

prior observations� The constraints consist in linear equalities of the form

K
t� � M�
t� 
���

�



where K
t� � ���o and M � ���n de�ne linear constraint relationships� with � being the

number of constraints� W� � ���� in 
��� is the relative penalty associated with each

constraint� and 
 is the area of the window over which the cost function is computed 
it

is included in the penalty term so that the relative in�uence of a �xed weight remains the

same� regardless of the value of the forgetting factor used��

Temporal and spatial constraints are used� Temporal constraints penalize parameter values

that deviate from their previous estimate� In such case�K
t� � M�
t���� where �
t��� is the

estimate at the previous time instant� Such temporal constraints result in a smoothing over

time� but do not hinder the ability to track rapidly varying parameters if there is su�cient

excitation to determine them� Spatial constraints may penalize parameter estimates that

diverge from a priori estimates of their true values� These estimates can be constant� or

they can be computed by on�board nonlinear models� Spatial constraints may also include

constraints among the di�erent parameters� For example� the lift and moment generated by

a tail surface are related by the distance to the center of gravity� and this relationship may

be incorporated as a constraint� Other constraints based on �ight dynamics 	��
 may also

be used�

Because the cost function in 
��� is convex and continuously di�erentiable� its minimum

can be found by solving dJ
���d� � �� From 
���� it can be checked that

dJ
��

d�
�

tX
k�t�

�t�k	
k�	T 
k�� � 
MTW�M� �
tX

k�t�

�t�k	
k�yT
k� � 
MTW�K
t� 
���

where dJ
���d� is a matrix whose i� jth element is the derivative of J with respect to �ij�

Solving for �� one obtains

�
t� �

�
� tX
k�t�

�t�k	
k�	T 
k� � 
MTW�M

�
�
�	 �
� tX
k�t�

�t�k	
k�y
k� � 
MTW�K
t�

�
� 
 
���

Note that the second term in the matrix inverse originates from the constraints� Without this

term� the matrix could come close to singularity under low excitation conditions� resulting in

a high sensitivity to noise� Conversely� the term may be adjusted to ensure the invertibility
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of the matrix� even in the presence of insu�cient excitation� This prevention of singularities

is known as regularization 	��
 and is the principle behind a number of successful batch and

nonlinear regression techniques such as ridge regression 	��
 and the Levenberg Marquardt

algorithm 	��� ��
� In contrast to plain regularization� the algorithm 
��� has an additional

term not only in the matrix inverse on the left� but also in the matrix on the right� In

	��
� it was shown that this additional term provided further smoothing capabilities of the

algorithm in the presence of noise�

��� Recursive and Sequential Implementations of the Modi�ed Least Squares

Algorithm

For the application to recon�gurable control� an implementation of the algorithm is needed

that progressively computes new estimates of the parameters based on the latest data avail�

able� For that purpose� the main di�culty is the calculation of the matrix inverse� Note

that the size of the matrix inverse is dependent on the number of regressor variables 
i�e��

the dimension of 	�� but not on the number of output variables 
i�e�� the dimension of y��

In other words� there is a considerable computational advantage to having several output

variables share the same regressor� This advantage was exploited in the selection of the

parameterization in section ����

In 	��
� a recursive implementation of the algorithm was proposed which was similar to

that of the standard recursive least�squares 
RLS� algorithm and avoided the need to invert

the matrix at every time instant� Because of the constraints� an approximate update of the

matrix inverse had to be implemented� but the approximation was found to be satisfactory

in recon�gurable �ight control simulations 	��
� An alternative approach� called here the

sequential approach� consists in calculating the matrix inverse at periodic time intervals�

The resulting algorithm is called the modi�ed sequential least�squares algorithm 
MSLS��

Speci�cally� 
��� is rewritten as

�
t� � R��	
t�s�
t� 
���

��



with R�
t� and s�
t� given

R
t� � �R
t � �� � 	
t�	T 
t� 
���

R�
t� � R
t� � 
MTW�M 
���

s
t� � �s
t� �� � 	
t�y
t� 
���

s�
t� � s
t� � 
MTW�k
t�
 
���

R and s should be initialized at R
�� � � I� where � is a small positive constant and

I � �n�n is the identity matrix� and s
�� � R
���
��� where �
�� is an arbitrary vector

of initial coe�cients� To solve 
���� it is useful to recognize that R�
t� is a symmetric

positive de�nite matrix 
assuming a full rank matrix MTW�M�� and that it may therefore

be decomposed into upper and lower triangular matrices via Cholesky factorization� The

Cholesky decomposition yields

G
t�GT 
t��
t� � s�
t�� or � G
t�H
t� � s�
t�
 
���

Forward elimination is used to solve 
��� for H
t�� Given H
t�� back�substitution will pro�

duce �
t� from

GT 
t��
t� � H
t�
 
���

The computational requirements of the sequential algorithm were compared to those of

the recursive algorithm and to those of a sequential algorithm based on a Givens�rotation al�

gorithm� The three algorithms 
Cholesky� Givens� and Recursive� were evaluated on a variety

of sample problems� simulation data� and �ight data� The results of these algorithms were

qualitatively similar� so that the selection was based on ease of implementation and computa�

tional e�ciency� For a �ve�parameter identi�cation problem 
typical of the application under

consideration�� the recursive algorithm required approximately ��� multiplies� the Cholesky

technique required approximately ��� multiplies� and the Givens approach required approx�

imately ��� multiplies� The Cholesky method was chosen because it represented signi�cant
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savings over the Givens approach and was only slightly more computationally demanding

than the recursive approach� The major advantage of the sequential approach over the re�

cursive implementation was that computational load could be adjusted by performing the

matrix inverse at a time interval compatible with available resources�

�� OFF�LINE PARAMETER IDENTIFICATION RESULTS

��� Batch Identi�cation Results

Evaluation of the identi�cation algorithm was performed using Lockheed Martin�s nonlin�

ear �DOF simulation of the F��� and �ight data provided by Calspan� First� exhaustive

experiments were conducted using a batch form of the identi�cation algorithm 
LS�� This

algorithm is the same as the algorithm discussed in the previous section� but with � � �

and no constraints� The results revealed interesting issues� First� errors were found with

simulation data due to misalignment of channels� Because parameters in the simulation were

updated in a speci�c order� certain signals were not properly aligned with other signals de�

pendent on the calling structure of the program modules� Identi�cation algorithms are quite

sensitive to data alignment and� interestingly� alignment problems were also encountered in

the �ight tests�

It was also found that the estimates of M� provided by identi�cation algorithm were

signi�cantly di�erent from those originating from a trim and linearize procedure implemented

in Lockheed Martin�s simulation code� The discrepancies were explained by the fact that the

identi�cation algorithm computed a  lumped! M� that included leading�edge �ap e�ects�

These e�ects tend to stabilize the aircraft and move M� towards the negative direction� It

is an issue in such comparisons that identi�cation often determines  lumped! parameters�

that group together e�ects that may be considered di�erent�

Table � compares the estimated stability and control derivatives with data alignment

issues resolved and with leading�edge �ap e�ects included� The derivatives provided by the

trim and linearize procedure are compared to those obtained by the identi�cation algorithm

for simulated data and for �ight test data� The �ight condition is at Mach ���� and ������
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ft altitude� From Table �� batch LS parameter identi�cation results are found in good

agreement with the simulations�s trim and linearization estimates of the longitudinal stability

and control derivatives� The match between the simulation data and the �ight data is also

good� although there remained a di�erence in the parameterM� that could not be explained�

The di�erence in the parameter M� is not a signi�cant one� because any discrepancy in the

zero reference line of the tail surfaces would translate into a change in the parameter M�

equal to the angular di�erence multiplied by M�ts� In other words� the di�erence in M�

could be attributed to a bias in the calibration of the control surfaces� position of only � to

� degrees�

��� Results with the Sequential Implementation

In this section� we compare RLS and MSLS identi�cation results on the same �ight test data

as used for batch identi�cation� The RLS algorithm is identical to the MSLS algorithm�

except for the absence of temporal and spatial constraints� The objective of this section is

to demonstrate the signi�cant advantages that these constraints provide� The temporal con�

straints discourage large parameter excursions between samples� while the spatial constraints

discourage variations from a priori or expected values�

Fig� � shows the estimates of �qts and �qta obtained using the RLS algorithm� In the �gures�

the solid lines correspond to the RLS parameter estimates� and the dotted lines correspond

to the  true! parameters obtained from batch identi�cation� In Fig� �� the RLS algorithm

is seen to estimate �qts with reasonable accuracy� However� the estimate of �qta provided

by the RLS is much in error� Because the �ight data consisted of pitch�axis maneuvering�

the asymmetric elevon de�ection was negligible and there was insu�cient information to

determine this parameter�

Fig� � shows MSLS parameter identi�cation results for the same �ight data� As before�

the solid line corresponds to the parameter estimate� and the dotted line represents the

 true! parameter� The dashed line is a spatial constraint� In Fig� �� the MSLS estimate of

�qts is slightly smoother than the corresponding RLS estimate� although the two parameter
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estimates are qualitatively similar� The MSLS estimate of �qta is markedly improved over the

corresponding RLS parameter� Despite the absence of appreciable asymmetric elevon activ�

ity� the MSLS estimate is stable and well�contained� because temporal and spatial constraints

serve to regularize �qta during periods of low excitation�

It could be argued that the constraint simply biases the parameter towards the true value�

and that this value would not be known� in general� However� a spatial constraint was also

applied to the symmetric tail contribution to pitching moment� Yet� because there was

su�cient symmetric elevon activity� the MSLS ignored the spatial constraint and faithfully

tracked the true parameter� In other words� the spatial constraint does not have to be equal

to the true parameter for the identi�ed parameter to converge correctly in the presence of

su�cient excitation� It only helps to maintain the parameter to a reasonable value when

there is not su�cient information to determine that parameter�

	� FLIGHT TEST RESULTS

	�� VISTA
F��� Implementation

The VISTA�F�	
 aircraft is sketched on Fig� �� The aircraft contains a Variable Stability

System 
VSS� implemented on three Rolm Hawk��� computers� It was found that each of

these Hawk��� computers had approximately the throughput of an Intel 
��

 processor� so

that limits on computational power were a major consideration� In a typical application� the

VSS computes e�ector commands that make the VISTA responses imitate the behavior of

some other aircraft� For this project� however� the VSS software was replaced by an adaptive

control software� The self�designing control software was segmented so that its computations

could be shared by the three Hawk computers� One of the Hawk computers was used for the

parameter identi�cation algorithm and� because of computational limitations� was updated

at approximately ��Hz�

For safety� the VISTA digital �ight control computer has logic that continuously monitors

the VSS�computed commands and reverts control to the primary F��� control laws if VSS

commands are deemed unsafe� The logic is known as the Vehicle Integrity Monitor 
VIM��

��



and is responsible for ensuring that the VSS system does not violate any pre�speci�ed �ight

envelope or structural safety limits� In those limits are structural limits that prevent any

actuator commands from putting twist on the fuselage when the velocity exceeds ��� knots�

Because a typical recon�guration scenario is one in which asymmetric �aperon is used to

counteract rolling moments generated by a tail command in the case of a tail failure� all the

�ight tests had to be limited to speeds below ��� knots�

	�� Measurements

The identi�cation algorithm requires the measurement of the state variables �� �� q� p� and

r� As Fig� � shows� the VISTA F��� aircraft is equipped with an AOA 
angle of attack�

cone� two AOS 
angle of sideslip� cones� and rate gyros� Together� these sensors provide

measurements of all the state variables�

The values of the control signals are also required� It was decided to use the measured

positions instead of the commanded variables� The positions were provided by synchros

connected to the actuators� In part� the choice of using actual vs� commanded control

variables was due to the observation of a signi�cant hysteretic behavior of the actuators�

Symmetric and asymmetric actuator positions were computed back from the left and right

positions� This computation was performed because the pseudo�e�ectors were the variables

used by the control law� and because the use of pseudo�e�ectors allowed to impose certain

useful limits on the parameters 
see section �����

The derivatives of the state variables are also needed for identi�cation� In general� they

may be calculated by �ltered di�erentiation� However� in this application� it was found

advantageous to use accelerometer measurements� Referring again to Fig� �� note that the

aircraft is equipped with three accelerometer stations 
one at the pilot� and two slightly

above and below the center of gravity�� From those accelerometer measurements� the three

rotational accelerations were reconstructed using standard formulas and the knowledge of

the distances between the accelerometer stations� While accelerometer measurements are

noisy� it was found that the noise had relatively little impact on the parameter identi�cation
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algorithm� which performed the required smoothing�

The derivatives �� and �� can also be reconstructed from acceleration measure�

ments� referred to the center of gravity of the aircraft� In fact� the signal �� � q �

tan � 
p cos �� r sin�� � gL�
Vt cos�� which appears in 
���� 
��� is the wind z�axis ac�

celerometer signal at the center of gravity divided by Vt cos�� In this application� comple�

mentary �lters from the standard VSS software provided clean signals for �� and ��� and the

signals were used for identi�cation�

	�� Constraints and Supervisory Functions

The identi�cation algorithm incorporated a number of constraints on the parameters� Tem�

poral constraints forced the parameters to be near previous values� Spatial constraints

included constraints derived from �ight mechanics� and a priori values� For the maneuvers

�own in the �ights tests� many of the A�matrix terms were constant or varied as simple

functions of �ight condition� Using simulation data� quadratic functions were calculated for

the expected values of the A�matrix terms as functions of �ight condition�

A variety of supervisory functions were also considered for the parameter identi�cation�

These functions included� 
�� abrupt change detection� 
�� adaptive levels of active noise

injection� 
�� removal of parameters associated with poor excitation� 
�� freezing of the pa�

rameter estimates during periods of insu�cient excitation� and 
�� clamping of the parame�

ter values� Eventually� the only supervisory function that was implemented was parameter

clamping� This function was implemented as a precaution against unforeseen parameter di�

vergence� The values at which the parameters were clamped were determined by considering

a variety of conditions and obtaining the maximum and minimum values from simulation

data� To allow for failure situations� the limits on the contribution of the asymmetric tail to

the pitch equations were set to be � ��� that of the symmetric tail� Likewise� the limits on

the contribution of the symmetric tail to the roll�yaw equations were set to be � ��� that

of the asymmetric tail�

	�� Failure Simulation

��



The software had a self�contained failure module which emulated the e�ect of various types

of failures� Single or multiple failures could be triggered at desired times� The failure module

intercepted the control law commands� modi�ed them� and sent the modi�ed commands to

the actuators� For ���" e�ective 
unimpaired� surfaces� the actuator commands were not

modi�ed by the failure simulation� and for �" e�ective control surfaces� the e�ector was

commanded to  �oat! parallel to the local �ow� thus approximating a missing surface� A

partially missing actuator was commanded between the �oating position and the desired

displacement�

Ine�ective left and right tail surfaces were simulated by commanding the corresponding

surface to the negative of the local angle of attack� The local angle of attack is di�erent from

the aircraft angle of attack due to downwash e�ects at the tail� The downwash at the tail

stems from the aerodynamic interaction between the wings and the tail surfaces� particularly

the vortex�sheet motion of the air�ow behind the aircraft wing� and reduces the e�ective

angle of attack at the tail� Data for the F���� provided by researchers at Wright Laboratory�

showed that the downwash variation with aircraft angle of attack was approximately linear

within the restricted �ight envelope allowed by the vehicle integrity monitor� This linear

relationship was used for failure simulation�

Ine�ective left or right �aperons were simulated by commanding the e�ectors to the

negative of the aircraft angle of attack� Reduction in the e�ective angle of attack at the

wings� owing to interaction of the fuselage with the wingbody� was assumed to be negligible�

and the local angle of attack at the �aperon was taken to be the aircraft angle of attack�

Similarly� an ine�ective rudder was simulated by commanding the rudder to the aircraft

angle of sideslip�

Prior to activation of the failure� the failure module simply passed actuator commands

through� without modi�cation� Upon activation� the failure was eased in� i�e�� e�ector posi�

tions were transitioned from their current values to those of the failed control surfaces over

a period of several seconds� Ground simulation and �ight test experiments led to a choice
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of a time constant such that the actual e�ectiveness was ��" of the desired value after �

sec
� ��" after � sec
� ����" after � sec
� etc� While batch and piloted simulations indicated

that the adaptive algorithm could readily compensate for abrupt 
instantaneous� changes

in e�ectiveness� the progressive transtion was required so that actuators were not driven at

their rate limits and that safety 
VIM� constraints were not violated during the transition

from unfailed to failed operation�

In addition to modifying the actuator commands� the failure simulation needed to give

to the parameter identi�cation process the information that it would receive if the actuator

had been displaced by the full commanded value� This result was achieved by adding to

the measured actuator position the di�erence between the commanded position sent to the

failure simulation module and the commanded position sent to the actuator� This simple

adjustment was adequate because the actuator dynamics were fast and close to linear�

	�	 Parameter Identi�cation Results

The self�designing controller 
SDC� underwent �ight testing during the period from May

��� ����� to July �� ����� Five test �ights were performed� each lasting approximately one

hour� Due to the limited amount of �ight time� the SDC tests did not employ a build�

up approach whereby various components of the software and algorithm would have been

tested sequentially� Rather� the test plan for the �rst �ight called for the entire algorithm and

associated software to be engaged� then� depending on the results� experiments of increasing

or decreasing di�culty would be tried� This kind of approach was possible because of the

safety provided the VISTA F��� Vehicle Integrity Monitor module�

As for the simulations� a signi�cant amount of time was spent making sure that the data

was aligned and correct� Because the �ight tests included the evaluation of the recon�gurable

control law� considerable e�ort was also spent adjusting the desired control responses for

�ying qualities� The remaining time was spent addressing and resolving problems with

the parameter identi�cation� Few such problems were encountered� but during one of the

�ights� there was a divergent nose�down transient exhibited by the SDC� Post��ight analysis
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revealed that the pitch excursion resulted from a parameter going to zero� This parameter

estimated the contribution of the symmetric elevon to the pitch acceleration� Inspection

and analysis of the data revealed that the problem was due to small errors in the inertial

cross�coupling compensation� which manifested itself during multi�axes maneuvers where the

cross�couplings were signi�cant� The pitch rate equation was the most susceptible to these

problems because of large roll and yaw rates attained for relatively mild turns 
recall Fig� ���

To remedy the problem� two modi�cations of the parameter identi�cation routines were

implemented� Di�erent forgetting factors were applied for the di�erent parameters� and the

forgetting factors as well as the spatial and temporal weighting matrices were optimized

to avoid temporary excursions of the parameters to undesirable values� The new settings

were obtained o��line using a guided�random search algorithm� Settings were chosen which

minimized the weighted�sum�squared error between key estimates and true parameters in

simulations�

A second modi�cation to the identi�cation software was an adjustment in the  clamping!

routines that limited parameter estimates to prede�ned minimum and maximum values�

These extrema were chosen to encompass all values that the  true! parameters could possibly

take on at any combination of loading� mass property con�gurations� �ight condition� and

potential failure scenarios� Originally� the upper limit on the contribution of symmetric

elevon to pitch acceleration had been set at ���� Note that this parameter is normally

negative� so that an upper limit is in fact a lower limit on the e�ectiveness� For the parameter

to be equal to zero� both left and right elevons would have to be simultaneously �" e�ective�

Because such a failure scenario is not likely and� further� would not allow any successful

recon�guration� the upper limit for the parameter was modi�ed and set at a small negative

value 
��
���� Other parameter limits were modi�ed similarly� In subsequent �ight tests�

the parameters rarely encountered the limits� although the limits eliminated undesirable

responses that occurred in such instances�

Parameter identi�cation results� using the optimal settings� are shown in Fig� �� A miss�
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ing elevon was simulated� The solid lines show the estimated parameters and the dashed

lines show the !true! parameters 
the quotes refer to the fact that the true parameters are

only estimates of the parameters based on other identi�cation results�� The progressive en�

gagement of the failure is visible from the responses and the identi�ed parameters are found

to converge to the true parameters� Convergence of the asymmetric tail parameters is slower

because of the lower level of activity in that signal� As expected� one �nds that the pitching

e�ectiveness of the symmetric tail de�ection is halved after the failure� Also� the pitching

e�ectiveness of the asymmetric de�ection moves from zero to the same e�ectiveness as that

of the symmetric de�ection� An identical� but reversed picture� is observed for the rolling

moment�

Fig� � shows the pitch rate and elevon commands during landing with a 
simulated� ���"

missing left elevon� The plot on the top shows the pitch rate and the desired pitch rate

speci�ed by the �ying qualities model� The plot below shows the elevon positions� Time

histories begin �� sec� into the �ight record� at the time of SDC engagement and failure

activation� They terminate at touchdown approximately ��� sec� into the record� The �gure

shows that there were no signi�cant transients upon activation of the impairment� The left

elevon moved to a position equal to approximately one degree� and �oated at the local angle

of attack� The position of the right elevon moved in the opposite direction to maintain trim

of the aircraft� and provided the moments needed to achieve stabilization and the desired

pitch rate�

Despite the e�ects of a simulated failure being compounded by a signi�cant crosswind 
��

kts
� and gusty conditions during the landing� �ying qualities were satisfactory for all axes�

and� as noted by the �ight crew� performance of the adaptive control law was consistent and

predictable for the entire �ight� To the authors� knowledge� this was the �rst time that an

aircraft with simulated damage had been landed under recon�gurable control�

�� CONCLUSIONS

The identi�cation of aircraft parameters for use in recon�gurable control poses signi�cant

��



problems� The problems are mostly due to the poor information content of the signals used

for identi�cation combined with the need for rapid adaptation� As a solution to this problem�

this paper proposed a modi�ed least�squares algorithm which incorporates temporal and

spatial constraints� This novel on�line system identi�cation technique was found to rapidly

track time�varying parameters and to be robust to adverse conditions such as low excitation

or correlated inputs� A signi�cant part of the design was the selection of an appropriate

model structure� which accounted for the nonlinear dynamics of importance with a minimal

number of parameters� The choice of temporal and spatial constraints was also critical to the

performance of the algorithm� A series of �ight tests resulted in a landing under a simulated

failure condition and on�line recon�gurable control� and demonstrated the success of the

identi�cation algorithm in determining the parameters of the aircraft in real�time�
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��� Relationship between the Parameters and the Dimensionless Derivatives
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The forces and moments acting on the aircraft can be de�ned in terms of dimensionless

aerodynamic coe�cients� with� Tx � �qSCT � D � �qSCD� Ya � �qSCYa� L � �qSCL� �L � �qSbCl�

�M � �qS�cCm� �N � �qSbCn� where �q � 	
��V

�
t is the free�stream dynamic pressure� S is the

wing reference area� b is the wing span� and �c is the mean aerodynamic chord of the wing�

The dimensionless coe�cients are parameterized as follows

Cm � Cm�
� Cm�

�� Cm ��
�� � Cmq

q � Cmts
�ts � Cmta

�ta 
���

CL � CL�
� CL�� � CLts�ts � CLta�ta 
���

Cl � Cl� � Cl�� � Clpp� Clrr � Clts�ts � Clta�ta � Clfa�fa � Clrud�rud 
���

Cn � Cn� � Cn�� � Cnpp � Cnrr � Cnrud�rud 
���

CYa � CY� � CY�� � CYrud�rud
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The dimensionless derivatives are related to the parameters in 
���� 
��� by the following

equations�
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Some parameters are typically small� as indicated in the vectors� However� in order to share

computations among the di�erent variables of the longitudinal and lateral channels� all the

coe�cients were actually identi�ed�

��� Linearized State�Space Model

To obtain a linear state�space model for control derivations� the nonlinear portion 
NL� of

the equations of motion given in 
���� 
���� must be linearized with respect to the states�

Normally� one would require linearization with respect to the e�ector positions as well�

However� the NL equations are functions only of the aircraft states� As a result
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where t� is the time at which the linearization occurs� Note that it is not required for the

aircraft to be linearized at a trim 
or equilibrium� condition� and that the linearization may

only be accurate over a short time horizon�

The original equations 
���� 
���� may be linearized as

�x � Ax�B� � d 
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Only the non�zero partials of the nonlinear terms have been included in the matrices� Addi�

tionally� parameters that are small have been put in fbracesg� The partials of the nonlinear

terms can be derived from 
���� 
���� and are given by
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Figure �� Contribution of Nonlinear E�ects to the Longitudinal Responses
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Table �� Longitudinal Stability and Control Derivatives

Parameter Trim # Linearize Batch LS Batch LS


Sim�� 
Sim� Data� 
Flight Data�

MQ ����� ����� �����
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M�ts ����� ����� �����

M� ����� ����� ����

ZQ ���� ���� ����

Z� ����� ����� �����
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Figure �� RLS Estimates of �qts and �qta
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Figure �� MSLS Estimates of �qts and �qta
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Figure �� Elevon Control Derivatives from Flight Data
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