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Abstract—The paper considers the objective of optimally specifying redundant 

control effectors under constraints, a problem commonly referred to as control 

allocation. The problem is posed as a mixed 2 -norm optimization objective and 

converted to a quadratic programming formulation. The implementation of an 

interior-point algorithm is presented. Alternative methods including fixed-point 

and active set methods are used to evaluate the reliability, accuracy and efficiency 

of the primal-dual interior-point method. While the computational load of the 

interior-point method is found to be greater for problems of small size, 

convergence to the optimal solution is also more uniform and predictable. In 

addition, the properties of the algorithm scale favorably with problem size. 
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INTRODUCTION 

Control allocation is the problem of managing the redundant control effectors such 

as found in modern aircraft. Two classes of algorithms for solving the problem are 

linear programming techniques and least-squares (LS) methods, corresponding to 1 -

norm and 2 -norm objectives, respectively. Perhaps the most notable advantage of the 

2 -norm formulation is that it yields solutions that use all the surfaces, instead of 

relying on a few, as with the 1 -norm. This characteristic limits the degradation of 

performance during an actuator failure, as more control surfaces are utilized to 

compensate for the loss of a specific control [1]. Benefits from this behavior also 

include a lower sensitivity to numerical data, and smoother flight trajectories.  

Current methods for solving the 2 -norm formulation include LS with clipping, 

redistributed pseudo-inverse [2,3], an approximate quadratic programming method [4], 

and the fixed-point method [5]. These methods are simple and easy to implement, and 

they work well for a restricted range of commands. However, they typically find 

approximate solutions. Recently, active set methods, which find the exact optimal 

solution in a finite number of steps, have been proposed for solving control allocation 

problems [6].  

A powerful class of algorithms for solving optimization problems is the set of 

interior-point (IP) methods. IP methods have been applied to 1 -norm formulations of 

control allocation problems [7], but are also capable of minimizing non-linear objective 

functions constrained by linear equality and inequality constraints. Primal-dual IP 

methods travel along the proximity of a central path that leads to an optimal point. A 

benefit of such methods is that the relative distance from the optimum is always known, 
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so that one can exit the algorithm when a solution is reached within a specified 

tolerance. Convergence is also uniform towards the optimal solution. The IP method 

that is described and implemented in this paper is adapted from Vanderbei [8,9]. Test 

results with two aircraft models enable comparisons of the fixed-point, active set, and 

primal-dual methods, in terms of accuracy, convergence, and computational efficiency.  

PROBLEM STATEMENT 

The objective of control allocation in flight control is to determine the n components 

of the control vector, u, that result in the desired roll, pitch, and yaw components of the 

acceleration vector, da . These components are assumed to be related to the control 

vector by the controls effectiveness matrix, CB, as follows: 

 { }min maxda CBu u u u= ≤ ≤  (1) 

where 3x nCB∈ℜ . Model reference control laws [10] and dynamic inversion control 

laws [11] allow one to specify the trajectories of the output of the system by selecting 

the value of the term CBu due to the control input. The existence of a "control allocator" 

enables one to divide the control problem into a small size dynamic compensator, and a 

large size static redundancy management system. We expect that other applications 

with redundant effectors will emerge in the future. 

In general, there is no guarantee that da  is attainable or that the solution is unique. 

If the solution is not unique, a secondary objective is to minimize the magnitude of the 

control vector, or its distance from a preferred control value, 0u . Combining two 
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objectives is known as mixed optimization, and can be expressed with the quadratic 

programming problem 

 
2 2

02 2

min max

min
subject to  

du
J CBu a h u u
u u u
= − + −

≤ ≤
 (2) 

where 0h > . The factor h is used to adjust the relative weighting of the secondary 

criteria and is usually chosen to be small.  

Note that an optimization problem 

 
( )
( ) ( )

min

subject to 0, 0
x

f x

G x H x= ≥
 (3) 

has a global solution if G and H are linear functions and f(x) is convex [12]. Equation 

(2) will be shown to fall in this category meaning that a control allocation problem with 

mixed 2 -norm terms has a unique solution. 

CURRENT METHODS 

Current methods for solving quadratic control allocation problems are based on 

pseudo-inverse techniques. LS with clipping (LSC) is simply a truncated LS solution. 

Redistributed pseudo-inverse [2,3] successively computes a LSC solution using the 

remaining unsaturated variables after each iteration to reduce the error until all variables 

are saturated or the objective is achieved. Enns' [4] proposed a quadratic programming 

method that iterates to find a solution that lies on an ellipsoid that encircles the feasible 

space. This solution is clipped to give controls that satisfy their limits. To solve dual 

purpose objectives these methods must be broken into a two-step process, essentially 



  
 

5

solving two problems sequentially. The main attraction of these methods is that they are 

simple to implement. However, they typically do not yield an optimum solution, 

especially for unattainable commands.  

Burken, et al [5], used a fixed-point method to solve a mixed optimization problem 

equivalent to (2). This method is very easy to code and is fast for most achievable 

commands. Although Lu [13] proved global convergence for the method, in practice it 

converges quite slowly for large commands. Therefore, the fixed-point method is 

usually implemented with a fixed number of iterations such as 50 [6,14]. 

Härkegård [6] has recently proposed active set methods for solving control 

allocation problems. Among these the weighted least-squares (WLSQ) method was the 

most efficient. Active set solutions are much like simplex solutions except they can be 

applied to quadratic cost functions. Convergence is fast, but an upper bound on the 

number of iterations can be very large.  

QUADRATIC PROGRAMMING FORMULATIONS OF CONTROL ALLOCATION 

Equation (2) can be converted to a standard quadratic problem formulation. Let  

 min 0 0 min

max max min 0 min

,
, d

x u u x u u
x u u a a CBu
= − = −

= − = −
 (4) 

resulting in the constraint set 

  max , 0, 0x w x x w+ = ≥ ≥  (5) 

w is a slack variable used to guarantee the upper bound on x. J can be expanded to 
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( ) ( ) ( ) ( )0 0 0 0

1
2

T T

T T

J CBx a CBx a h x x x x

x Hx c x k

= − − + − −

= + +
 (6) 

where ( )2 TH CB CB hI= + , ( )0 02T T Tc a CB hx= − + , and 0 0 0 0
T Tk a a hx x= + . Since a 

constant in the objective function does not affect the optimal solution, k is dropped and 

the final form is 

 
1
2

max

min
subject to  , 0, 0

T T

x
J x Hx c x

x w x x w
= +

+ = ≥ ≥
 (7) 

INTERIOR-POINT ALGORITHMS 

If the weighting factor, h, is greater than zero, or if CB has full row rank, H will be 

positive definite. Under this condition, the objective function of (7) is convex and the 

Karush-Kuhn-Tucker (KKT) [15,16] optimality conditions apply globally. Making use 

of logarithmic barrier functions to satisfy the lower bound constraints, the Lagrangian 

of  (7) is expressed as 

 
( )

( ) ( )

1
max2

1 1

log log

T T T

n n

i i
i i

L x Hx c x z x w x

x wµ µ
= =

= + + + −

− −∑ ∑
 (8) 

where 0µ > . From the Lagrangian, the first order optimality conditions are derived as 

 max

0, 0
0, 0

0, 0, 0, 0

Hx c z s Xs e
x w x Wz e

x w z s

µ
µ

+ + − = − =
+ − = − =

> > > >
 (9) 

where X and W are diagonal matrices whose diagonal elements are x and w, 

respectively. e is defined as a column vector of ones. To satisfy the KKT conditions, (9) 

must hold with 0µ = . In this case, 0Xs =  and 0Wz = , which are known as the 
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complementarity conditions. The parameter, µ , is referred to as the complementarity 

gap and is used to guide the solution along a trajectory called the central path. The 

central path is a sequence of solutions that leads to the optimal point. Path-following 

methods attempt to travel in the neighborhood of the central path until a solution is near 

the optimum. There is an abundant variety of mechanisms and theorems in operations 

research literature for achieving this result. The following presentation is an attempt to 

evaluate the implementation of the applicable methods to the control allocation 

problem. 

Primal-Dual Interior-Point Algorithm 

You will have the greatest control over the appearance of your figures if you are 

able to prepare electronic image files. If you do not have the required computer skills, 

just submit paper prints as described above and skip this section. 

1) Step Direction: To get the step direction, we substitute 

{ }, , ,s s w w x x z z+ ∆ + ∆ + ∆ + ∆  for { }, , ,s w x z  in (9) and drop the non-linear terms to 

arrive at  

 

( )1 1 1

1 1

1 1

c wz xs u

u

xs

wz

x D r W r X r W Zr
w x r
s X r X S x
z W r W Z w

− − −

− −

− −

∆ = + − −
∆ = −∆ −
∆ = − − ∆
∆ = − − ∆

 (10) 

where ( ) 11 1D H X S W Z
−− −= + +  and where the residuals are defined as 

 
max

,
,

c xs

u wz

r Hx c z s r Xs e
r x w x r Wz e

µ
µ

= + + − = −
= + − = −

 (11) 
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These residuals make initialization a simple matter by allowing infeasible starting 

points, i.e. points that do not satisfy the equality constraints, which can be difficult to 

determine. 

2) Step Size: Since the variables are coupled through the equation 

cHx c z s r+ + − = , a common step size must be used in the updates of all variables. To 

satisfy the inequality constraints, the maximum allowable step size, α , must be 

determined. The update law is 

 ,   
,

x x x s s s
w w w z z z

ρα ρα
ρα ρα

= + ∆ = + ∆
= + ∆ = + ∆  (12) 

where { }min , , ,x w s zα α α α α=  and                                                                                       

 min , 1 0,  1...i
p i

i

p p i npα
⎧ ⎫⎡ ⎤= − ∆ < =⎨ ⎬⎢ ∆ ⎥⎣ ⎦⎩ ⎭

 (13) 

for { }, , ,p x w s z∈ . The term ρ  must be in the range 0 1ρ< < , but is usually chosen 

above 0.9 for fast convergence. We use 0.9995ρ =  in our implementation. 

3) Computation of µ : As µ  goes to zero, the iterates converge to an optimal point. 

In an attempt to keep the variables in the proximity of the central path, the elements of 

Xs and Wz are reduced to zero at a similar rate. This can be accomplished by computing 

µ  using the average of the complementarity conditions, such as 

 
2

,
T Tx s w z

n
γ µ σγ+
= =  (14) 
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where 0 1σ< < . σ  can be chosen dynamically to improve convergence as suggested by 

Vanderbei [8] and Zhang [17]. We have experienced good results employing Zhang's 

method, ( )min 0.1, kσ γ= , with k = 100. 

4) Stopping Criteria: From the KKT criterion, the optimal solution occurs when all 

the residuals and the complementarity gap are zero. The residuals,  and c ur r , can be 

forced to be zero at initialization. Interestingly, we have found that this strategy worked 

well, although it does not with 1 -norm optimization[7]. With  and c ur r  both zero, the 

only errors left in the system are directly related toµ . Therefore, when µ  has 

converged sufficiently close to zero, the algorithm is terminated. 

5) Starting Point: The presence of H in the matrix D has a stabilizing effect on the 

conditioning of the system, as well as adding robustness to the starting point. Likewise, 

the starting point is of little consequence as virtually any interior starting point 

converges in similar time. One may take advantage of this property to reduce 

computations by eliminating some of the residuals. Setting initial values of 

max0.5x w x= =  and 0s z= > , forces 0c ur r= =  so that the equations of (10) may be 

simplified. 

Predictor-Corrector Path-Following 

The vast majority of commercial software is based on Mehrotra's predictor-corrector 

method [18]. Mehrotra split the correction into two steps, a predictor and a corrector, by 

exploiting 2nd order terms of the primal-dual update. The predictor step advances the 

iterate toward the optimal solution while reducing infeasibility. The corrector step keeps 

the updated point near the central path and utilizes the 2nd order terms to make a 
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correction toward the optimal point. Zhang and Zhang [19] further extended Mehrotra's 

method to quadratic programming, including a quadratic line search for α. The 

predictor-corrector method has been applied to 1 -norm objectives and was not 

advantageous for control allocation problems of small size [7]. Therefore, it was not 

implemented for the 2 -norm objective. 

Numerical Stability 

In the experiments tested, the primal-dual IP algorithm consistently converged to 

extremely small values (<1e-15).  This benefit stems from the multiple positive terms 

that add to the diagonal elements of D, resulting in a well-conditioned matrix. However, 

the cost of this robustness is increased computational load, namely due to the 

computation of 1D− . One method available to partially alleviate this problem is to 

compute 1D−  using the Sherman-Morrison-Woodbury formula  

 ( ) ( )1 11 1 1 1T T TP QR P P Q I R P Q R P
− −− − − −⎡ ⎤+ = − +⎢ ⎥⎣ ⎦

 (15) 

where xn nP∈ℜ , xm nQ∈ℜ , and xm nR∈ℜ . 

TEST RESULTS AND COMPARISONS 

The three algorithms, fixed-point, WLSQ active set, and primal-dual IP, were tested 

using linear models of a Boeing C-17 cargo jet and a version of Lockheed-Martin's 

advanced tailless fighter design. Comparisons of the algorithms are made regarding 

accuracy, efficiency, and convergence properties.  
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Measure of Accuracy 

The following metric is used to gauge acceleration accuracy  

 2 2

2

d d opt
a

a CBu a CBu

CB
ε

− − −
=  (16) 

Normalizing the acceleration error by CB has the effect of turning aε  into a 

measurement similar to actuator angle error. This is convenient for determining an 

acceptable range for aε , since the resolution of actuators is easily obtained. optu  is 

determined from the WLSQ active set method because it converges to the exact solution 

in a finite number of steps. For IP algorithms, accuracy is determined by the stopping 

tolerance. For the simulations that follow, a stopping tolerance of 0.0001sε ≤  is used to 

yield an acceptable error of 0.1aε ≤ . The weighting parameter, chosen as 0.0001h = , is 

sufficient to guarantee uniqueness while providing minimum control effort.  

Fixed-Point vs. Primal-Dual IP 

The fixed-point method is theoretically capable of finding an optimal point, but may 

require many iterations to converge. Therefore, a typical implementation will use a 

fixed number of iterations. Increasing the number of iterations improves the result, but 

eventually becomes impractical. The initial cost of the fixed-point method is large, but 

it requires few computations per iteration. The convergence is highly dependent on the 

attainability of the command. We measure attainability by the magnitude of a 

command, da , normalized by the magnitude of the boundary point, ba , that lies in the 

direction of the command  
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 d

b

a
aη =  (17) 

Fig. 1 demonstrates the great variability in convergence rate over the attainability 

axis for the tailless model (with similar results for the C-17 model). Convergence is fast 

for small commands ( )0.5η < . When the boundary of the attainable set is reached, 

convergence can become very slow. Plots for only one command are given but they are 

typical of the fixed-point method. 

  Fig. 2 shows a plot of acceleration error of the fixed-point and primal-dual IP 

methods as functions of floating point operations (flops). In the plot, convergence 

behavior over three values of η  demonstrate that the IP method exhibits much more 

consistency between models than the fixed-point method.  Also note that the initial cost 

of the fixed-point method is almost as high as the stopping point ( )0.1aε ≤  for the 

worst IP curve. 

The sharp changes in the slope of the error curves of the fixed-point method are due 

to actuator saturations. Fig. 3 shows the error together with the actuator positions as a 

function of the number of iterations. There are three distinct changes in the convergence 

rate shown. Each corresponds to at least one actuator reaching a position limit. 

Active Set vs Primal-Dual IP 

A test set Ψ  is created, comprised of three subsets of vectors, namely, achievable, 

exactly achievable, and unachievable acceleration commands corresponding to 

{ }1
2 , , 2Ω Ω Ω , respectively. The subset, 3Ω⊂ℜ , consists of 1000 vectors in random 

directions that are scaled so that each vector just touches the boundary of the attainable 
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set. Two more subsets of vectors are then created by halving and doubling the 

magnitudes. Most control allocation algorithms behave differently for these three 

subsets of commands. The test set was therefore created this way to ensure that each 

case was adequately represented.  

As with the fixed-point method, the WLSQ active set method converges quickly for 

small commands. For larger commands, convergence is initially quite slow. The final 

iteration usually drops the error from about 0.1 to about 0.00001. This makes it difficult 

to predict if the algorithm is near an optimal solution. Fig. 4 is a plot of the active set 

acceleration errors using the C-17 model. The convergence rates for each subset of Ψ  

are different enough to show them separately. Outlines are drawn to represent the 

envelope of acceleration errors for the subsets. Solutions to small commands are 

quickly found while larger commands require a wider range of iterations. Similar 

results, but fewer iterations overall, are found for the tailless model. 

The primal-dual IP method exhibits at least exponential convergence for both 

models. The results for the C-17 are shown in Fig.  5 and are representative of both 

models. The number of computations per iteration for an active set method is variable. 

During the progression of a solution, the computational load of an active set method can 

often decrease, whereas the IP method requires the same number of computations at 

each iteration. Although active sets may require more iterations, the active-set method 

is more efficient than the IP method for the models tested. 

Another interesting difference between the active set and IP methods is the 

evolution of the estimate toward the optimal solution. With the active set method, 
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several variables are typically at their extremal values. Variables can be changed from 

inactive to active, preventing them from being stuck at non-optimal values. However, it 

can also lead to multiple switchings in values which forces one to wait until the 

algorithm has fully completed its decisions. In contrast, IP methods tend to exhibit more 

gradual behavior. Fig. 6 and Fig.  7 show that actuator values converge much smoother 

when computed using the primal-dual IP method than with the active set method. 

Another advantage of the interior-point methods is that they scale very favorably 

with problem size. Active set methods generally require increasing numbers of 

iterations with increasing numbers of control effectors. This relationship is shown to be 

essentially   linear in Fig. 8. For a given problem size (defined by the number of 

controls), 1000 random CB's and da 's are created and solved using both the active set 

and primal-dual IP methods. The maximum number of iterations for each method is 

plotted. The convergence of the IP method is shown to   be   independent    of   problem   

size.   The   computational advantage of the IP method is even more pronounced with 

regard to the number of flops required for convergence. Fig. 9 reveals an exponential 

increase in computations with number of controls for the active set method, whereas the 

IP method has more of a linear relationship. The crossover point for which IP methods 

begin to outperform active sets in computational efficiency is around n=15. 

CONCLUSIONS 

Traditional methods of control allocation do not always provide an optimal solution, 

especially for unattainable commands. To address this problem, several optimization 

algorithms have recently been proposed that obtain exactly optimal solution. A primal-
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dual interior-point method was described in this paper, including the details needed for 

a successful implementation. Linear models of a C-17 and an advanced tailless aircraft 

were used to test accuracy and efficiency of the method. The results for the interior-

point method were also compared to those obtained with a fixed-point method and an 

active set method. The fixed-point algorithm is the simplest of the three algorithms 

considered. It provides good results for commands that are well within the attainable 

set. However, convergence can become very slow at the boundary and for unattainable 

commands. The active set algorithm converges exactly to the solution in a finite number 

of steps, and is computationally very efficient for control allocation problems of small 

size. Interior-point algorithms compete favorably with active set methods for problems 

with a large number of control effectors, but require somewhat more computations for 

current, typical applications. Nevertheless, their uniform convergence properties are a 

significant advantage, since real-time control requires a fixed bound on the number of 

iterations. In addition, predicting when the solution is near optimal is not possible with 

active set methods, but both feasible and accurate for interior-point methods. The 

computational load of interior-point methods is also tractable with modern computers, 

although significant. 
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Fig. 1. Acceleration error of fixed-point method over a wide range 
of attainability and number of iterations. (Tailless Fighter Model) 

 
 
 

104 105 106 107 10810-4

10-3

10-2

10
-1

100

101

Flops

εa Fixed-Point

Interior
Point

     =0.5

=2

η

η
η =1

 
Fig. 2. Acceleration error as functions of the number of iterations 
using fixed-point and IP methods for different values of η . 
(Tailless Fighter Model) 
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Fig. 3. Relationship of convergence of εa to actuator saturations. 
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Fig. 4. Envelope of acceleration errors using an active set method 
for different magnitudes of commands.(C-17 Model) 
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Fig.  5. Envelopes of primal-dual IP convergence rates for different 
magnitudes of commands for the C-17 model. 
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Fig. 6. Actuator values during active set convergence. (C-17 
Model) 
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Fig.  7. Actuator values during primal-dual IP convergence. (C-17 
Model) 
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Fig. 8. Maximum number of iterations for convergence. 
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Fig. 9. Maximum number of flops for convergence. 
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