
 

Abstract—The paper proposes an optimization formulation of 

the control problem for power electronic converters. A benefit of 

the approach is a systematic method for the control of high 

switch-count static converters. In the case of the 3-phase, 4-leg, 2-

level inverter, the framework provides a characterization of all 

the possible solutions that yield a maximal extension of the invert-

er linearity range. The method makes it possible to recover well-

known modulation strategies, as well as to discover some new 

ones having different properties and distinct advantages. The 

characteristics resulting from different design choices are evalu-

ated in simulations, with consideration being given to the linearity 

range, total harmonic distortion, and switching losses. Key prin-

ciples of extension of the proposed method to multilevel, multileg 

converters are given, as well as motivations for an FPGA-based 

hardware implementation enabling real-time PWM control.  

 
Index Terms—Voltage source inverter, 4-leg 2-level inverter, 

voltage control, PWM, control allocation, optimization, simplex 

algorithm, median voltage injection. 

 

I. INTRODUCTION 

IXED high switching-frequency pulse-width modulation 

(PWM) is an essential class of modulation methods for 

power converters [1], [2]. For the widely-studied 3-leg 2-level 

inverter, two popular PWM methods are: (1) carrier-based 

pulse-width modulation (CBPWM) [1]–[3], using low-

frequency modulating signals and a high-frequency carrier 

wave, and (2) space vector theory, using a 3-phase geometric 

vector representation of the inverter and leading to the well-

established space vector modulation (SVM) techniques [1], 

[2], [4], [5]. The main theoretical differences between 

CBPWM and space vector theory are related to the way the 

degree of freedom left in the inverter is exploited [1], [6]–[12]. 

Typically, this degree of freedom is used to increase the in-

verter linearity range [4]–[7], [13], [14], to reduce switching 

losses [15], [16], or to mitigate current harmonics using subop-

timal modulating solutions [17]–[18]. 

However, the difficulty of developing control strategies in-
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creases rapidly as the number of switches grows, especially 

with the widely-used space-vector representation. For the 4-leg 

2-level inverter, the addition of the fourth-leg raises the num-

ber of possible locations of a reference voltage vector from a 

2D plane divided into 6 sectors [4], [5] to 24 tetrahedrons in a 

3D representation [12], [19]–[21]. 

Starting from these observations, the paper proposes a new 

control strategy different from traditional PWM control and 

based on on-line numerical optimization using linear pro-

gramming techniques. This strategy is expected to be more 

generic, to be less dependent on the switch count, and to avoid 

difficulties encountered with a geometric approach. The con-

trol problem of the converter is formulated as an under-

determined constrained optimization problem. Such problem 

is remarkably similar (although not identical) to the control 

allocation problem studied previously in flight control and 

marine applications [22], [23]. In this paper, the focus is 

placed on the 4-leg 2-level inverter, where a complete charac-

terization of the solutions is possible without the use of numer-

ical techniques, thus enabling a good understanding of the pos-

sibilities opened by this new formulation. 

A previous implementation of the control allocation ap-

proach method for the 4-leg inverter was based on the descrip-

tion of its active voltage vectors [24] and the regular-sampled 

symmetric PWM (RSPWM) [3]. The correct non-zero vector 

sequence was computed using a numerical optimization meth-

od based on the simplex algorithm, removing the need to iden-

tify a reference tetrahedron, as was done in earlier work. 

Considering switching cells as available resources subjected 

to ranges of operation, a different control allocation method is 

introduced here, reducing the size of the problem considerably. 

Moreover, the paper proposes an analytical solution of the 

optimization problem that reduces the control of the inverter to 

the computation of the median of a special series. Furthermore, 

CBPWM-equivalent formulas are given for modulation laws 

derived from the new control allocation problem. 

As constraints are taken into account in the optimization 

problem, solutions resulting from control allocation methods 

for power converters naturally yield a maximal extension of 

the linearity range of the inverter [24], [25]. Specific choices 

of the algorithm’s parameters produce modulation laws with 

different properties, all implementable with few computations. 

Under the general umbrella of the proposed strategy, not only 
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are previously-proposed modulation laws found as special 

cases, but new interesting modulation schemes are discovered 

as well. Simulation results illustrate the properties of the dif-

ferent methods obtained. Switching losses and total harmonic 

distortion (THD) on voltages and currents are evaluated in 

computations for comparison. 

II. 4-LEG 2-LEVEL INVERTER ASSUMPTIONS FOR PWM CONTROL 

A. Inverter and load 

The 4-leg 2-level inverter is a well-proven solution for 3-

phase systems with neutral wire, for applications like distribut-

ed generation, active power filtering, common-mode active 

filtering or fault-tolerant operation of electric drives [12], 

[19]–[21]. Fig. 1 illustrates the inverter, star-connected to a 

load with per-phase resistances and inductances values RK, LK, 

K{A,B,C,N}. The load can be unbalanced or nonlinear. The 

fourth-leg (N) is connected to the neutral point of the load in 

order to control the neutral voltage and also handle possible 

unbalanced currents. Here, RN and LN are neglected, and the 

ground reference G is the lower DC bus in order to facilitate 

the derivation of control equations. EDC is the DC bus voltage. 

B. Switching cells 

A switching cell is taken to be an association of two func-

tional switches working at complementary binary states. Dead 

times are neglected. Each leg is comprised of one switching 

cell. For K{A,B,C,N}, the state of the switching cell K is the 

state of the corresponding upper switch, SK, equal to 0 when 

the switch is off and 1 when the switch is on. 

C. Output voltages, load voltages 

The 4 output voltages VKG are referred to the ground G. Re-

garding the star-connection, it is useful to define for each of 

the three first legs a relative switching state SKN = SK − SN. 

Then, the 3 independent load voltages, referred to the neutral 

point N, are given by VKN = EDC SKN, for K{A,B,C}. 

D. Pulse-width modulation 

The mean value DK =<SK>Ts of SK over the switching period 

TS defines the duty cycle of the switching cell K, DK[0,1]. 

Mean-value references voltages are obtained with RSPWM by 

determining the gating pulses SK from the duty cycles DK as 

illustrated on Fig. 2. The load voltage mean values are 

    KNDCNKDCTKN DEDDEVCBAK
S

     ,,,  

The linearity range of the converter is defined here as the 

range of amplitude of the 3-phase sinusoidal reference voltage 

system for which the converter delivers a voltage system with 

the desired values. Because of the star-connection, with classic 

sinusoidal PWM (SPWM), the linearity range is restricted to 

EDC/2. A common modification extends this range by varying 

the neutral potential of the load. When the desired voltages 

are balanced and three-phase, the maximal output amplitude 

achievable linearly is 1/3·EDC, as for SVM [4], [5] or SPWM 

with 1/6 third-harmonic injection (THIPWM1/6) [13], [14]. 

III. CONTROL ALLOCATION FOR INVERTER CONTROL 

A. Control allocation methods 

Control allocation methods were developed in aerospace 

problems as a solution for over-actuated systems subjected to 

constraints [22], [23]. It is assumed that the process to be con-

trolled can be modeled by a constrained system of m control 

equations with n unknowns, with m<n: 


maxmin, uuuauB   

The matrix B, of size m×n, specifies the effectiveness of the 

actuators. B is assumed to be of rank m (rows are linearly in-

dependent). The vector u, of length n (column), is the control 

vector that specifies the chosen use of actuators. The vector a, 

of length m (column), is the resulting output vector. Denote 

umin and umax (vectors) as the minimum and maximum bounds 

of each component of the control vector u, respectively. One 

wants to find a control vector u to obtain a given desired out-

put vector ad. Considering the constraints, the problem (2) may 

have zero, one, or an infinity of solutions. Methods have been 

developed to extract a solution from the whole set of feasible 

solutions by formulating an optimization problem. 

The objective of the 4-leg 2-level inverter control is to ob-

tain a desired reference vector ad = Vref = (VANref, VBNref, VCNref)T 

of 3 load voltages on average over the switching period TS. In 

order to scale the voltages with respect to EDC, define the 

scaled reference vector as ΔDref = Vref / EDC = (DANref, DBNref, 

DCNref)T. Here, ΔDref is similar to the difference of duty cycles 

between the three first legs and the fourth one, see (1). Then, 

the system of equations of (2) depends on the chosen control 

variables and the converter control requirements. 

B. Switching cell formulation 

The control problem can be formulated as finding duty cycle 
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Fig. 1.  Illustration of the 4-leg 2-level inverter connected to a three-phase 

load with impedances ZA, ZB, ZC. 
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Fig. 2.  Illustration of the realization of gating pulse on switch A of width 

DA·TS and centered over the switching period TS (RSPWM). 
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The switching cell formulation (3) is a simpler alternative to 

the space vector formulation in [24], introducing less control 

variables and a smaller matrix. In order to find a control solu-

tion to the under-determined constrained control problem (3), 

the following optimization problem is defined:  

10   subject to 

,min 01
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The primary criterion Jctrl(DS) = ||MSDS − ΔDref||1 is a control 

error based on the control equation in (3). Because the solu-

tion is often not unique, the secondary criterion Jpref(DS) = 

ε·|DS − DSpref| is a deviation error added to specify preferred 

uses of the switches, where |  | denotes the application of the 

element-wise absolute value. The column vector DSpref = 

(DApref, DBpref, DCpref, DNpref)T corresponds to the preferred duty 

cycle values. The row vector ε = (εA, εB, εC, εN) helps to give 

further preference to one or more switches, which makes it 

possible to affect the weight of deviation errors from preferred 

positions in Jpref. Although the parameters εK can be real num-

bers, we will restrict them to be integers, with little loss of 

generality. This choice will result in a simple solution of the 

optimization problem. Finally, the small real parameter ε0 

gives priority to the minimization of the control error Jctrl [22]. 

The optimal solutions are determined by the choice of the 

parameters DSpref and ε, which produce a large number of pos-

sible configurations. We will discuss a few choices in the next 

sections. The associated control diagram is shown on Fig. 3. 

IV. CHARACTERIZATION OF ALL FEASIBLE SOLUTIONS WHEN 

THE REFERENCE IS ACHIEVABLE 

A. Constraint set when the reference is achievable 

When the reference vector is achievable, the optimization 

problem can be simplified. Solutions can be determined ana-

lytically, depending on the parameters DSpref, and ε. This leads 

to relatively simple expressions of the modulating signals. 

Due to the particular form of MS, the solutions that achieve 

the reference can be characterized by the single variable DN:  

   NrefKNK DDDCBAK     ,,,  

If there is at least one positive and one negative voltage in the 

reference vector (it is the case if the reference voltage vector is 

three-phase), bounds DNmin and DNmax can be defined as 

refNrefN DDDD  max1,min
maxmin

 

and the whole set of feasible solutions that achieve the refer-

ence vector is described by constraints on DN alone:  

     0,,
maxmin

 NctrlNNN DJDDD  

Therefore, as long as the constraint set is not empty, i.e., as 

long as DNmin ≤ DNmax, any signal resulting from solutions of 

(5) will achieve a maximal linearity range. 

B. Reduction of the solution to a single decision variable 

The secondary criterion to be minimized is  



 
prefKK

NCBAK

KSpref DDDJ  
 ,,,

)(   

By defining a series dmod of elements dmodK as 

  
refKNprefKK

DDdCBAK  mod   ,,,  

  
 NCBAKKprefNN

ddDd
,,,modmodmod 

  

and by substitution in (25), the criterion Jpref can be now re-

formulated as an explicit function of DN:  



 
KN

NCBAK

KNpref dDDJ mod

,,,

)(  


  

that is a sum of distances on the real-axis from DN to the points 

dmodK and weighted by the parameters εK. The single decision 

variable DN solely represents the available functional degree of 

freedom. The optimization problem is considerably simplified. 

C. Solution of the optimization problem 

The minimization of sums of weighted absolute deviations 

from a unique number (here DN) to other fixed numbers (here 

dmodK) is a well-known mathematical problem [26]–[30]. Here, 

the solution is introduced thanks to the definition of the special 

series dmodε, for which each dmodK appears εK times. From [26]–

[30], it can be deduced that, without considering constraints, 

the solution of the minimization of (13) reduces to the deter-

mination of the median (denoted med) of the series dmodε for 

all values of the design parameters. 

The sum of all the εK gives the size (or number of elements) 

of dmodε. In practice, two distinct cases are encountered: (1) the 

series dmodε is of odd size: the optimal value of DN denoted 

DNopt is the midpoint of the series and is unique; (2) the series 

dmodε is of even size: DNopt is a set of values of DN belonging to 

the segment delimited by the two midpoints of the series. 

Fig. 4 illustrates the optimal solutions depending on the na-

ture of the size of dmodε. The criterion Jpref is a piecewise linear 

function due to the use of absolute values. The “even” case in 

Fig. 4 (a) is inconvenient because there is an infinite number of 

solutions, and control is not uniquely determined. In practice, a 
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Fig. 3.  Diagram of the proposed control allocation method. 



 

slight adjustment of the problem statement is sufficient to 

make the optimal solution unique, as shown in Fig. 4 (b). 

Finally, the median set of the series dmodε has to be con-

strained by the bounds DNmin and DNmax in order to obtain fea-

sible solutions. Therefore, optimal solutions of the constrained 

problem are the elements DNopt belonging to the intersection of 

the median set of dmodε and of the segment [DNmin, DNmax]. 

D. Special choices of parameters 

The choice of parameters DSpref and ε has a direct and signif-

icant effect on the nature of dmodε, on the optimal set of DN, and 

on the resulting modulation strategy. Sets of parameters having 

interesting practical implications are given as examples. 

The adjustment of DSpref translates into preferred duty cycle 

values of for each switch. The most common choices for DSpref 

would be DSpref {(0…0)T, (1…1)T, (0.5…0.5)T}. 

The first obvious choice of ε is a vector of ones, implying 

no discrimination between switches. More generally, to avoid 

non-symmetric behavior with respect to the three phases, the 

first three weights should be identical. This yields the follow-

ing propositions for adjusting ε: {(1…1), (1 1 1 0), (0 0 0 1)}. 

V. EXAMPLES & SIMULATION RESULTS 

Specific solutions are derived and illustrated for the most in-

teresting choices of parameters DSpref and ε, as summarized in 

Table I. Simulations are carried out in the MATLAB Simulink 

environment. Evaluations of switching losses, THD on voltag-

es and THD on currents are given later for comparison. 

For the following figures showing duty cycles, the scaled 

reference amplitude value increases from left (a) to right (c) 

until the limit of 1/3 is reached. A whole fundamental period 

is illustrated. Reference voltages are chosen to be three-phase 

and balanced for simplicity, but the method also works with 

unbalanced references. As it will be useful for determining 

optimal solutions, we denote ΔDmed = med ΔDref the median of 

the scaled reference vector.  

A. Configuration 1 

Selected configuration: First of all, consider the natural 

choice where all preferred duty cycles are set to 0.5, which 

means DSpref = (0.5 0.5 0.5 0.5)T and ε = (1 1 1 1).  

Determination of the median: As all the εK are identical, all 

the dmodK have the same occurrence in the series dmodε:  

 5.0,5.0,5.0,5.0mod refCNrefBNrefAN DDDd 


 

The size is even. Therefore, optimal solutions DNopt belong to 

the segment defined by the two midpoints of dmodε. In the case 

where the reference system is three-phase, 0.5 is necessarily 

one of the two midpoints of dmodε. The second midpoint is 

linked to ΔDmed. Consequently, 

   5.0,5.0med medmod Dd 


 

Remark: If ΔDmed is negative, the segment [0.5−ΔDmed, 0.5] 

has to be replaced by [0.5, 0.5−ΔDmed]. For simplicity, this 

trivial adjustment will be assumed to be made if necessary. 

Optimal solutions: Finally, optimal solutions are any value 

belonging to [0.5−ΔDmed, 0.5] and saturated by [DNmin, DNmax]. 

Fig. 5 gives an illustration of the domain of the DNopt wave-

forms. The bounds DNmin and DNmax are represented by the ex-

tremal bold lines, delimiting the saturation domain. As the 

reference amplitude increases, the saturation domain becomes 

narrower. The scaled value of 1/3 is the limit where for some 

instants =k/3, k{0,...,6}, the two extremal bold lines meet, 

meaning that DNmin is equal to DNmax, see Fig. 5 (c). 

In Fig. 5, the two plain midlines draw the bounds of the op-

timal domain of DN (hatched area). As the scaled amplitude 

increases, the median segment grows wider and eventually 

encounters the saturation domain (from (b)). The two lines 

labelled (1) and (2) correspond to the maximum and minimum 

bounds of the nonsaturated optimal solution set, respectively. 

Fig. 6 shows the optimal domain of the DA waveforms, de-

termined from the optimal domain of DN by using (6). The 

fundamental wave is represented by the dashed gray midline 

(when visible). As for Fig. 5, the optimal domain of DA ob-

tained if DN’s is not saturated is represented by the lines la-

belled (1) and (2). The parts of any optimal saturated DN mod-

ulating signal that encounters the bounds DNmin or DNmax corre-

spond to periods where a leg is continuously clamped to the 

DC bus or to the ground, as observed on Fig. 6 (b)–(c). 

When DN is not saturated, a certain regular waveform of DA 

is identified, which stays proportional to the reference ampli-

tude until saturation appears. Then, as a result of the satura-

tion, the optimal domain of DA changes form compared to 

Fig. 6 (a) in order to achieve the correct fundamental wave. 

This particular property is shared by most of modulation strat-

egies obtained from the proposed control allocation method. 
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Fig. 4.  Illustration of the effect of parameters on the solving of the simpli-

fied optimization problem with arbitrary ΔDref. DSpref = (0.5 0.5 0.5 0.5)T. 

TABLE I 

CONFIGURATION EXAMPLES OF THE CONTROL ALLOCATION METHOD 

n° DSpref 
T ε Resulting PWM laws 

1 (0.5 0.5 0.5 0.5) (1 1 1 1) undetermined 

2 (0.5 0.5 0.5 0.5) (1 1 1 0) OMIPWM [25] 

3 (0.5 0.5 0.5 0.5) (0 0 0 1) ASPWM 

4 (1 1 1 1) (1 1 1 1) DPWMmax [1], [9], [11]  

~ (0 0 0 0) (1 1 1 1) DPWMmin [1], [9], [11]  

OMIPWM: opposite median-voltage injection PWM; ASPWM: adaptive sinus PWM; DPWM: discon-

tinuous PWM. 



 

B. Configuration 2 

Selected configuration: With the previous configuration, the 

optimal solution was not unique. In order to force the series to 

be of odd cardinal, a first possibility is to remove the prefer-

ence on the fourth duty cycle that controls the neutral potential 

while keeping the symmetry between the three phases. This 

leads to DSpref = (0.5 0.5 0.5 0.5)T and ε = (1 1 1 0). 

Determination of the median: dmodN does not appear in the 

series dmodε and, as the other εK are identical,  

 
refCNrefBNrefAN DDDd  5.0,5.0,5.0mod

 

Thus, the median is directly given by med dmodε = 0.5–ΔDmed. 

Optimal solution: the optimal value DNopt is unique and is 

equal to 0.5–ΔDmed saturated by [DNmin, DNmax]. It corresponds 

to parts of the optimal domain given by the previous configu-

ration and farthest from 0.5 in Fig. 5. Thanks to the analytical 

solution, a carrier-based equivalent method can be given. It 

consists in injecting the opposite of the median reference in 

the waveform of DN as a zero-sequence signal. This new mod-

ulation method was recently proposed in [25] under the name 

of opposite median-voltage injection PWM (OMIPWM). Un-

like SVM, where the zero-sequence signal always corresponds 

to the value of the midpoint between DNmin and DNmax (see [6], 

[8]–[11], [16], [25]), DN will tend to reach the bounds DNmin 

and DNmax for OMIPWM. From a certain reference amplitude 

value, discontinuous modulation appears with increasing dis-

continuous periods. This feature is highlighted in Fig. 5 (b)–(c) 

at =/6+k/3, k{0,…,5}. OMIPWM is a new method, easy 

to implement, which automatically ensures the transition from 

a continuous to a discontinuous modulation scheme as a func-

tion of the reference amplitude [25]. 

C. Configuration 3 

Selected configuration: another possibility is to place a 

preference for the fourth duty cycle at 0.5, which means keep-

ing the neutral potential nearest to half of the DC bus voltage: 

DSpref = (0.5 0.5 0.5 0.5)T and ε = (0 0 0 1). 

Determination of the median: This time, only εN is non-null. 

dmodN = 0.5 is the only element of dmodε, thus, med dmodε = 0.5. 

Optimal solution: DNopt is unique and corresponds to the 

value 0.5 saturated by [DNmin, DNmax]. 

Fig. 7 shows the resulting optimal waveform of DN. In fact, 

most of the time, the optimal solution corresponds to SPWM, 

as shown on Fig. 8. However, SPWM has a linearity range 

limited to the scaled amplitude value of 0.5. As can be de-

duced from Fig. 7 (b), the constant DN solution value of 0.5 

starts to be saturated by the bounds DNmin and DNmax. It gives 

the minimal adjustment of the neutral potential needed to 

achieve the reference. A benefit of the optimal solution given 

by configuration 3 is that, unlike for SPWM, the maximal limit 

of 1/3 is reached. It appears that this solution has not been 

proposed before in the literature. The associated modulation 

law is called here adaptive sinus PWM (ASPWM).  

D. Configuration 4 

Selected configuration: it is also possible to adjust DSpref in 

order to specify a preferred value of duty cycle. For configura-

tion 4, we set DSpref = (1 1 1 1)T and ε = (1 1 1 1).  

Determination of the median: the median of the series 

med dmodε is not reduced to a unique element. It corresponds to 

[1–ΔDmed, 1] and it is always out of the saturation domain. 

Optimal solution: With the selected vector DSpref, the opti-

mal solution is DNmax, whatever the reference amplitude value 

is (of course comprised between 0 and 1/3). This solution 
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corresponds to the DPWMmax technique [1], [8]–[11], [16]. 

The same reasoning can be carried out with a preferred duty 

cycle value of 0. This choice leads to the optimal solution 

DNmin, which corresponds to the DPWMmin technique.  

E. Comparison of performances 

Performance criteria of importance to power electronic con-

verters were evaluated in simulations to gain a better under-

standing of the differences between the various solutions. Sim-

ulation parameters are given in Table II. 

Basic estimation of switching-loss energies over the simula-

tion time were obtained by using simple parametric models 

derived from curves available on datasheets. Only general 

trends should be considered. Switching losses are shown in 

Fig. 9 (a). Two quasi-parallel lines, one higher than the other, 

describe the evolution of the switching losses, for SVM and 

for DPWMmin or DPWMmax. The trend for OMIPWM is 

remarkable since the curve follows the SVM curve, and then 

switches to the DPWM curve as a function of the amplitude 

[25]. It is also the case for ASPWM, but the transition occurs 

for a much greater reference signal, because ASPWM is 

equivalent to SPWM until the scaled value of 0.5 is reached. 

Fig. 9 (b) shows the evolution of the THD on the load volt-

age VAN. THD was evaluated using the function thd of the Sig-

nal Processing Toolbox in MATLAB. THD trends on voltages 

are very similar for all methods, but some differences are 

found for currents that highlight differences in the spectral 

distributions, see in Fig. 9 (c). As for switching losses, only 

general trends should be considered since the precise value of 

THD depends on the load impedances. The transition effect of 

OMIPWM is also observed with the THD on the currents. At 

low amplitudes, the THD for OMIPWM on the currents is 

higher than SVM, but fairly close compared to the THD for 

the DPWM’s. As the amplitude increases, the THD on cur-

rents for OMIPWM converges to DPWM THD’s, which have 

dropped and are closer to the SVM THD’s. The same trend is 

found for ASPWM, but in a more mitigated manner, as 

ASPWM remains a continuous PWM method most of the time. 

OMIPWM presents better harmonic quality at low reference 

amplitude and lower switching losses at high reference ampli-

tude. It constitutes an advantageous compromise between con-

tinuous and discontinuous modulation [25]. ASPWM has the 

particularity of moving the neutral potential as little as possible 

from half the DC voltage, and moreover of not having an ef-

fect on the neutral potential when not needed. 

VI. EXTENSION TO MULTILEVEL, MULTILEG CONVERTERS 

In this paper, we introduced a new control allocation meth-

od for the voltage control of the 4-leg 2-level inverter. Howev-

er, the general approach is also applicable to multilevel, multi-

leg converters, as long as one derives control equations linking 

duty cycles of switching cells to desired outputs. As the nu-

merical optimization is based on the simplex algorithm, con-

trol equations must be linear (or linearized).  

We already developed control allocation methods for the 3-

phase multilevel flying capacitor inverter [31] and the 3-phase 

modular multilevel inverter [32]. To ensure safe and efficient 

operation of these converters, additional issues must be ad-

dressed, like the active-balancing of quantities related to ener-

gy-storing elements, like capacitor voltages. Linear discrete 

control equations can be derived from differential equations of 

capacitor voltages and/or output currents by sampling and 

holding state values and by performing 1-order predictions. 

Then, a LP problem is formulated. The problem is updated and 

solved for each control period. As a result of the optimized 

control, the method in [31] led to a fast active-balancing of 
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capacitor voltages. Finally, 4-leg inverters are already multileg 

inverters, but, in the same way, the approach is expected to be 

also applicable to converters with more than 4 legs. 

VII. ABOUT THE HARDWARE IMPLEMENTATION OF THE 

CONTROL ALLOCATION METHOD 

To achieve an efficient PWM operation, a high control fre-

quency is needed. Typical switching periods are around few 

hundreds of microseconds. FPGA implementation is a solution 

for complying with these strong time constraints, thanks to 

short memory read/write access times and advantages of hard-

wired logic like parallelism and pipelining. Up to now, the 

problem of the FPGA implementation of the simplex algorithm 

has been rarely addressed, and the first implementation known 

to the authors was proposed in 2006 [33] with 18-bit data pre-

cision. It led to a gain in computing times up to 20 times those 

obtained with optimized commercial solvers on PC’s [33].  

We are currently working on an FPGA implementation of 

the simplex algorithm dedicated to control allocation methods 

for power converters, using a Terasic TR4 development board 

(Altera Stratix IV FPGA core), with 32-bit floating-point data 

representation. A first validation of our implementation was 

carried out with small-size arbitrary linear programs thanks to 

the ModelSim Altera software. For the control problem of the 

4-leg 2-level inverter, we estimated computation times around 

50 µs, which is appropriate for switching frequencies up to 

10 kHz. Depending on the control objectives, the delay in-

duced by the computing time should be taken into account by 

the control strategy. A solution is to perform a two-step predic-

tion of the system states, and optimal control solutions will be 

applied only for the next control period. 

VIII. CONCLUSIONS 

In this paper, a new formulation of the control of a 4-leg 2-

level inverter was proposed. The problem was stated in terms 

of an optimization problem similar to the control allocation 

problem that was solved earlier in other applications, especial-

ly for flight control. The control objective was thus formulated 

as the distribution of the 3 reference voltages to the available 

redundant actuators, which consisted of the duty cycles of the 

switching cells. The control allocation theory presents an al-

ternative solution to converter control taking a step back from 

the known electronic or geometric viewpoints. The available 

degree of freedom is used in an optimized manner as the volt-

age constraint set is fully taken into account. A major interest 

of this framework is its possible application to problems with 

large number of switching cells [31], [32]. In the context of 

this paper, however, where a small size, 4-leg 2-level inverter 

was considered, the main result was the development of an 

approach providing a whole range of solutions giving a maxi-

mal extension of the inverter linearity range, all under the um-

brella of a single mathematical formulation. Investigations on 

optimization parameters revealed several possible choices with 

some corresponding to existing solutions, and others providing 

new approaches with distinct advantages, like OMIPWM [25] 

and ASPWM. An interesting feature of the analytic solutions 

obtained was that the resulting algorithms all reduced to carri-

er-based equivalent PWM methods. Moreover, they are appli-

cable to the classic 3-leg 2-level inverter connected to a three-

phase balanced load [25]. 

As the control allocation method optimizes the use of avail-

able resources with a general problem formulation, the ap-

proach seems promising for implementing a fault tolerant ca-

pability. However, this feature was not studied in this paper as 

the 4-leg 2-level inverter is not adequate for a meaningful in-

vestigation of redundancy. 
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