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Abstract

Two algorithms are presented for the rejection of sinusoidal disturbances with un-
known frequency. The first is an indirect algorithm where the frequency of the distur-
bance is estimated, and the estimate is used in another adaptive algorithm that adjusts
the magnitude and phase of the input needed to cancel the effect of the disturbance. A
direct algorithm that uses the concept of a phase-locked loop is also presented in which
frequency estimation and disturbance cancellation are performed simultaneously. Ap-
proximate analyses are presented for both schemes and the results are found useful for
the selection of the design parameters. Simulations are given which demonstrate the
validity of the analytical results and the ability of the algorithms to reject sinusoidal
disturbances with unknown frequency. The indirect algorithm is found to have a larger
capture region for the parameter estimates, whereas the direct algorithm has superior
convergence properties locally about the optimum parameter estimates.

Keywords: adaptive control, adaptive signal processing, sinusoidal disturbances, periodic
disturbances, phase-locked loops.

*This material is based upon work supported by the U.S. Army Research Office under grant number
DAAHO04-96-1-0085. The content of the paper does not necessarily reflect the position or the policy of the
federal government, and no official endorsement should be inferred.



1 Introduction

In this paper, we consider the problem of attenuating an output signal y(¢) that, in the
Laplace domain, is given by

y(s) = Ps)(u(s) —d(s)), (1)
where u(s) and d(s) are the Laplace transforms of the controller output and disturbance
signals, respectively, and P(s) is the Laplace transform of the impulse response of the plant.
The plant is assumed to be linear, time-invariant, and stable. The goal of the control system
is to generate u(t) such that y(¢) — 0 as t — oo. We assume that the disturbance d(t) is a

sinusoid of fixed magnitude 6;* and fixed frequency wy such that

d(t) = 61" cos(aq(t)),

dd(t) = w1 (2)

In this task, the parameters 6;", wy, and ay(0) are all unknown.

Algorithms for solving the above problem have use in a wide range of applications. Of
particular interest is the problem of active noise and vibration control, in which d(t) is
an offending noise or vibration source and P(s) is the transfer function of the output-
actuator-to-error-sensor propagation path. Often, the noise source consists mainly of peri-
odic components due to rotating machinery generating the undesired noise signal. Examples
of such noises include engine noise in turboprop aircraft (Emborg and Ross, 1993), engine
noise in automobiles (Shoureshi and Knurek, 1996), and ventilation noise in HVAC systems
(Eriksson, 1988). In practice, the frequency of the disturbance is usually not known and may
even vary during operation. In these cases, it is desirable to place an encoder or tachometer
on the rotating machine that is at the origin of the disturbance to measure the frequency of
the disturbance. Alternatively, if a sensor can be placed near the source of the disturbance
such that d(t) can be accurately characterized, then the control task reduces to that of adap-
tive feedforward control (AFC) (see Nelson and Elliott, 1992). However, it is impossible to

use such a sensor in applications where the addition of the sensor is too costly or reduces



the reliability of the overall system due to strong vibrations, high temperatures, or dirty
conditions within the environment.

In this paper, we present two adaptive control algorithms for the rejection of sinusoidal
disturbances with unknown frequency. These systems only require a single sensor located
at the output of the plant for their operation. The first approach combines an AFC scheme
for attenuating sinusoidal disturbances with known frequency as described and analyzed in
Bodson et. al. (1994) and Sacks et. al. (1996), together with an algorithm to estimate the
frequency of the disturbance. This approach is called indirect because the frequency of the
disturbance is estimated independently of the cancellation scheme. The second approach
consists in extending the AFC scheme of Bodson et. al. (1994) and Sacks et. al. (1996) by
integrating a phase-locked loop within the scheme so that disturbances with unknown fre-
quency can be directly cancelled. Our analyses of these two methods enable the design of the
systems to provide useful rejection of sinusoidal disturbances, and simulations validate the
theoretical results. Our results indicate that the direct algorithm has superior convergence
properties locally about the optimum convergent point of the controller, whereas the indirect

algorithm provides a wider capture region for the system’s adaptive parameters.

2 Indirect Approach
2.1 Frequency Estimation

Our development of the indirect algorithm relies on a method for the estimation of the fre-
quency of a signal. Here, we consider an adaptive notch filter developed in Regalia (1991)
that is designed to eliminate one (or more) periodic component(s) from a measured signal.
This adaptive notch filter estimates the frequency of the unknown signal as part of its op-
eration. In our work, we transpose Regalia’s algorithm to continuous-time so that standard
averaging methods can be used to analyze the system’s equations. It is relatively straight-
forward to transfer the results of our control system design back to the discrete-time domain
for implementation purposes.

Consider the problem of estimating the frequency w of a signal y(¢), where 6 is the



resulting estimate. The continuous-time version of Regalia’s algorithm has three states 0y,

x1, and x5, that satisty the differential equations

:tl = g, (3)
J:’z = —2C0f$2 — 0f2$1 —|— ky, (4)
éf = —gi(ky — 2(0sas)xy. (5)

Note that this system of equations is highly nonlinear. The three parameters of the system
are the adaptation gain ¢, the damping factor (, and a filter gain k, all of which are positive-
valued. The algorithm’s behavior can be explained through an averaging analysis, justified

for small values of ¢g; and for a periodic signal y (¢) (¢.f. Sastry and Bodson (1989)). For 6;

constant,
k ks

= — — 6
xl D(S,af) [y]7 1}2 D(S70f) [y]7 ( )

where D(s,0;) = s 4 2(0;s + 0;°. Furthermore,

k(s +0;%)

ky —2(0;xy = ———= [y]. 7
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By application of averaging theory, the evolution of the state 6y can be approximated by the
solution of the averaged system, which is given by
. k(s*+0%) k
Opo = —g1 AVGE | ———= S . 8
1 D(Saeav) [y] D(S70av) [y] ( )
Assuming that y(t) = Y7 r;sin(w;t + ¢;), the averaged system is given by
. g1 < E*r? (62 — w?)
eav —_ _ 7= K3 av K3
52

=02, = W) + (20uwi)”

If the signal y(t) has a single sinusoidal component, the analysis indicates that the averaged

(9)

system has a pair of equilibrium points at 8,, = +w;. Around wy, the linearized system is
exponentially stable, with dynamics

£11]€27“12
4203

Oy = (0w — w1) (10)

In other words, the algorithm is able to identify the frequency of the signal wy. Even in the

presence of multiple sinusoids, the algorithm is able to lock onto a main frequency component



despite the presence of competing tones. Typically, the averaged system will exhibit multiple
equilibrium points. If the parameter  is small, the first term in the sum of (9) will dominate
the others when ,, is close to wy. Therefore, in the neighborhood of 8,, = wy, the right-hand
side of (9) will be approximately the same as that of the system with only one sinusoidal
component. The same argument can be repeated for the other frequencies, so that there
will be an equilibrium point associated with each of the sinusoidal components of the signal
y(t). The initial value of §; and the magnitudes of the frequency components r; affect the

frequency towards which 8, will converge.

2.2 Indirect Adaptive Algorithm

The algorithm for frequency estimation can be combined with the adaptive feedforward con-
trol scheme in Sacks et. al. (1996) to produce an algorithm capable of attenuating periodic

disturbances with unknown frequency. The control law is given by

u(t) = 0.(t)cos(a(t)) — 85(t)sin(a(t)),
a(t) = 04(t), (11)

where the two adaptive parameters 6. and 0, are updated as

%l3212‘”(*1lf§$§$]v (12)

and
1 l Pr —P;

G=2
21 Pr Pr

|¢ Pompetrta p = tnipti (13)
The parameter go > 0 is an arbitrary adaptation gain. The averaging analysis of (12)-
(13) shows that, for small values of the gain g¢», the dynamics of this adaptive system are
approximately the same as those of two decoupled, first-order systems, with their poles
located at —gy (rad/s).

Note that the algorithm in (12)—(13) uses the value of the frequency response of the plant
at the frequency of the disturbance wy. However, the stability of (12) for small gain ¢ is

guaranteed so long as the phase of the frequency response is correct to within 90 degrees.



Therefore, a rough estimate of wy in (12) will be adequate in most cases. If desired, w; may

also be replaced by 6 in (13).

2.3 Simulations of the Indirect Algorithm

We now present simulations of the indirect algorithm for a plant given by P(s) = 100/(s +
100) and a sinusoidal disturbance d(t) = cos(100¢). In the frequency estimation algorithm,
we choose the initial states to be equal to zero, and we choose ( = 0.1, £ = 100, and
g1 = 1000. With these parameter choices, the pole of the linearized system in (10) is at
—125 rad/s. In the AFC scheme, the initial states of the system are set to zero, and we
choose go = 10. Such a parameter choice yields an averaged system with two real poles at

—10 rad/s, as predicted by the analysis in Sacks et. al. (1996).
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Figure 1: Frequency estimate for the indirect algorithm — Separate Adaptation

For our first simulation, frequency estimation and disturbance cancellation are performed
separately. Specifically, for the first second of the simulation, the parameters of the AFC
scheme are frozen while an accurate estimate of the frequency of the disturbance is calculated.
Then, the frequency estimate is fixed for ¢ > 1 and is used by the AFC scheme to adjust the

amplitudes of the cos(-) and sin(-) components of the controller to attenuate the disturbance.
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Figure 2: Log of the plant output for the indirect algorithm — Separate Adaptation
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Figure 3: Adaptive parameters for the indirect algorithm — Separate Adaptation



Fig. 1 shows the frequency estimate produced by the algorithm, as indicated by the solid
line in the figure. For our parameter choices, the frequency estimation algorithm in (12)-
(13) converges within the first second of the simulation to the value 6y = 99.95 rad/s, a
value close to w; = 100 rad/s. The response predicted by the nonlinear averaged system
in (8) is shown as a dashed line on this figure and is seen to closely approximate the true
system’s transient response. Note that the frequency estimation algorithm converges to its
proper setting despite a 100% initial error in the frequency estimate, and the ability of this
algorithm to lock onto the frequency of the unknown disturbance is useful in many practical
situations.

Fig. 2 shows the logarithm of the output of the plant, computed as log(|y(?)| + €) where
¢ = 107%. The envelope of the plant output is constant during the frequency estimation
phase of the controller’s operation and is seen to decrease rapidly once the AFC algorithm
is engaged. The system’s output does not decrease significantly after a period of time. The
evolutions of . and 6 are shown in Fig. 3 as a solid line and a dashed line, respectively.
While the parameters appear to be drifting for ¢t > 2 s, their variation is in fact sinusoidal at a
frequency equal to the difference between the true and estimated frequencies of disturbance,
and the sum of the squares of the parameters remains close to one over this time period.
Note that continuous variations of the amplitudes of the cos(-) and sin(-) components of
the controller output are necessary to reduce the disturbance amplitude when the frequency
estimate 6 is not exact, resulting in a low residual output error in steady-state.

We now explore the performance of the indirect scheme in a true adaptive mode in which
all the parameters are adjusted simultaneously. Although this implementation might be
expected to resolve the convergence problems observed with separate parameter adaptation
stages, such is not the case. The log of the plant output is shown in Fig. 4. Although this
implementation yields a more rapid decrease of the plant output, a substantial residual error
remains at the end of the simulation run. In this case, the lack of asymptotic convergence
may be attributed to the fact that the control input eliminates the signal which is used for

the frequency estimation, thus preventing accurate convergence of . This problem is an
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Figure 4: Log of the plant output for the indirect algorithm — Simultaneous adaptation

indication of the fact that the indirect scheme is overparameterized and can be resolved by
considering a direct adaptive scheme in which the amplitude and phase of the sinusoidal

component are computed via a single combined procedure, as we now show.

3 A Direct Algorithm
3.1 Adaptive Algorithm

An alternative approach to the indirect scheme of the previous section is a direct scheme
in which a single error signal is used to update the frequency and the magnitude estimates
simultaneously. Here, one such algorithm is presented that combines elements of the AFC
scheme discussed earlier with a modified version of a phase-locked loop structure commonly
used in communication systems (Hambley, 1990).

This scheme is shown in Fig. 5. In the figure, 0 is the estimate of the magnitude of the
disturbance signal, and 65 is the estimate of its instantaneous frequency. Moreover, « is the
estimate of the phase of the disturbance signal and is the integral of the estimate of the

frequency #,. The equations for the control algorithm are

u = 6cos(a),



o y
P(s)

cos(a)

Y1

7

0, C(s)

X< cos(a) Z»G— % Yo

| sin(a)

-sin(a)

Figure 5: Direct Adaptive algorithm for sinusoidal disturbance cancellation

d — 02,
y1. = ycos(a),
Yy = —ysin(a). (14)

The user-defined transfer function matrix C'(s) relates the signals y; and ys to the parameters
A1 and 6,, respectively. An approximate analysis of this adaptive system will allow us to
deduce a simple procedure for the design of C'(s) to obtain adequate performance from this

system.

3.2 Approximate Analysis

Our analysis is based on a fundamental fact, whose proof is reminiscent of derivations found
in the analysis of frequency-modulation communication systems (c.f. Hambley, 1990).

Assumptions:

e The values of #; and 6, vary sufficiently slowly that the response of the plant to the
signal u(t) can be approximated by the steady-state output of the plant for a sinusoidal
input with frequency 6s.

10



e The instantaneous frequency 6, is close to wy, such that P(j6;) can be replaced by

P(juw).

Basic Fact: Considering low-frequency components only, the two signals y1(¢) and y,(t) are

approximately given by

n(t) | _ 01(t) — dq cos(a(t) — aq(t))
l ya(t) ] =G l dy sin(a(t) — ag(t)) ’ (15)

where (7 is as defined in (13).

Proof: Under the assumptions, the output of the plant is given by

y(t) = Pgrbi(t)cos(a(t)) — Proy(t)sin(a(t))
—  Prd; cos(aq(t)) + Prdy sin(ay(t)). (16)

Keeping only the low-frequency components of the signals y; and y,, we find that

nlt) = SPa0i() ~ 5 Prdycos(a(t) — ault))
— L Pudysin(a(t) — (1))
A1) = SPu(1) + 5 Padssin(o(1) — o)
_ %Pfdlcos(oz(t)—ozd(t)), (17)

and the result is obtained.

Comments: The elimination of the high-frequency components within the system can
be achieved by proper low-pass filtering of the signals y1(¢) and y2(¢). In the algorithm
discussed in this paper, the signals are applied to a compensator C'(s) which is low-pass in
nature. Although the filtering is far from ideal, simulations show that our approximations

are satisfactory for the compensator design without the need for additional filtering.

3.3 Compensator Design

Equation (15) can be viewed as an alternative description of the plant, with two inputs 6,

and a and two outputs y; and y3. Although this equation is nonlinear, a linear system is

11



obtained if the phase error a — g is small. This system is described by

51 (t) 01 (t) — dl
=G . 18
] = [a oo )
Using this linearized result, several methods for designing C(s) can be used. Our ap-

proach, while not the best or the most sophisticated, yields a simple design for implementa-

tion purposes. We define two variables x; and x, as

[ (1) ] o [ yi(t) ] | (19)

ya(t)
so that b

l 28; ] - l dy (J5(0x(0) — ;i))da —|—10z(0) — ay(0)) ] - (20)
As a result, the dynamics of the system from the parameters §; and 0, to the variables x4
and x4 are decoupled from one another and are those of a gain of 1 and of an integrator with
a gain dq, respectively. The unknown parameters dy, wq, aq(0) act as constant disturbances.

The compensator C'(s) may then be designed as the cascade of the transformation (19) and

control laws of the form

01 = 018(8)[1,1]7
= 20 21

where the integrators are included to reject the disturbances composed of d; and «,4(0). The
transfer functions C1(s) and Cy(s) are designed to guarantee the closed-loop stability of the
two systems Py(s) =1 and Py(s) = dy/s. One possible choice is

s+ a

01(8) = —01, 02(5) = —928 T

(22)

Because the magnitude of the disturbance d; acts as a gain in the second transfer function,
the parameters of the compensator Cs(s) must be designed for a range of magnitudes of the
disturbance d;. Simple techniques can also be used to estimate the disturbance level before
the system is turned on.

The algorithm requires the knowledge of the matrix G, which depends on w;. Similar to

the indirect algorithm, one can resolve this problem in two ways. One may choose to design

12



a compensator that works satisfactorily for a range of matrices G corresponding to a range
of frequencies of the unknown disturbance. Often, the uncertainty in the frequency of the
disturbance is small enough such that variations in the ¢ matrix are inconsequential, yielding
adequate performance for a compensator designed for a mid-range disturbance frequency.
Alternatively, one could use for G the equivalent transfer function matrix corresponding to
the estimated frequency & = 6. In either case, knowledge of the frequency response of the

plant in the frequency range of interest is required.
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Figure 6: Log of the plant output for the direct algorithm

3.4 Simulations of the Direct Algorithm

We now explore the performance of the direct algorithm via simulation. We consider the
same situation as in the indirect algorithm, in which P(s) = 100/(s 4+ 100), w; = 100, and
dy = 1. For the direct algorithm, the parameter ¢g; is set to 10, leading to a closed-loop
pole for the first system at -10 rad/s. The other parameters are set to go = 400, ¢ = 5,
and b = 30, leading to three closed-loop poles for the second system located at —10 rad/s
and —10 + 510 rad/s. The initial states of all parameters are zero except for #,(0) = 0.9,
65(0) = 90 rad/s, and a(0) = 90 degrees. Note that, since ay(0) = 0, the system is initialized

13
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Figure 7: Magnitude estimate for the direct algorithm
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Figure 8: Frequency estimate for the direct algorithm
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with a large phase error, such that the linearized analysis is less accurate.

Fig. 6 shows the log of the output of the plant. The output is found to decrease to
negligible values in less than two seconds. The transient behavior of the magnitude estimate
0 is shown in Fig. 7, where the solid line is the parameter response, the dashed line is the
response predicted using the nonlinear approximation in (15), and the dot-dashed line is the
response predicted using the linear approximation in (18). The equivalent behaviors of the
actual and theoretically-predicted values of the frequency estimate 65 are shown in Fig. 8.
Note that the matches between the theoretical and actual behaviors of the estimates are
particularly good when using the nonlinear approximation, whereas the analysis using the
linear approximation is only accurate for the frequency estimate. Although the nonlinear
effects are clearly significant, our design based on the linear approximation provides adequate
convergence of the system.

In these simulations, the system converged despite a 10% initial error in frequency. It
was found that the scheme was able to acquire frequencies with errors up to 30% in this
case. It is well-known that an important characteristic of phase-locked loops is their lock-in
(or pull-in) range (Hambley, 1990). Careful design of the loop transfer function can increase
the lock-in range and improve performance. Additional supervisory logic might also be used
for acquisition, and would be part of a practical design. In addition, although the elements
of G were set to their nominal values corresponding to a disturbance frequency of 100 rad/s
for these plots, simulations with the nominal G replaced by a continuously-adjusted matrix
according to the estimated frequency of the disturbance did not exhibit significant differ-
ences in transient behaviors. Other simulations with slowly-varying disturbances and with
measurement noises indicate that the direct algorithm performs well in these situations, and

the effects of these variations can be analyzed precisely using the linear approximation, as

described in Bodson and Douglas (1996) and Bodson (1996).
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4 Conclusions

In this paper, we have presented two methods for the rejection of sinusoidal disturbances with
unknown frequency. While disturbance rejection for signals with known frequency has been
addressed extensively in the literature using various approaches, the analogous task for sig-
nals with unknown frequency has received comparably little attention despite its importance
in applications such as active noise and vibration control. Our study of an algorithm for
the determination of the frequency of an unknown signal yielded an averaging analysis that
was useful for system design. It was shown that this frequency estimation algorithm could
be combined with an AFC algorithm to obtain an indirect algorithm for the cancellation of
disturbances with unknown frequency. While this system was able to lock on a sinusoidal
signal with no a priori information about the frequency of the disturbance, the convergence
properties of the scheme were found to be less than ideal. A second algorithm incorporating
a phase-locked loop within the cancellation scheme yielded improved convergence properties,
and our averaging analysis provided a precise prediction of the dynamic characteristics of the
system. A successtul scheme for sinusoidal disturbance cancellation scheme would combine
the direct algorithm presented here with an initialization scheme for providing rough initial
estimates of the disturbance frequency. Simulations verified the results of the analysis and

indicated the usefulness of the algorithms for the sinusoidal disturbance cancellation task.
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