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Abstract: The paper presents a parameter estimator that is designed to estimate the frequencies, magnitudes,

and phases of the components of a periodic signal. The structure of the algorithm is reminiscent of a phase-locked

loop, although significant differences can be observed. The performance of the estimator is analyzed, and useful

design guidelines are provided. A version of the algorithm is presented that combines different components of

the signal, and/or signals from multiple sensors, in order to estimate the fundamental frequency. In this manner,

the algorithm is able to maintain tracking of the fundamental frequency despite changes in signal characteristics.

The results are verified in simulations, and the algorithms are found to be simple and effective for estimation and

tracking of time-varying parameters. Experimental results are reported where periodic signals are collected from

an active noise control testbed.

1. Introduction

The estimation of the parameters (e.g., frequencies, magnitudes, and phases) of periodic signals buried in noise is

important in many practical applications of signal processing, system identification and control system design. To

estimate the frequencies, several approaches exist, among others: (1) the classical non-parametric power spectral

estimation [7]; (2) eigen-analysis (or subspace tracking) spectrum estimation [13], [16]; (3) extended Kalman filter

frequency estimation [2], [8]; (4) adaptive notch filtering [1], [6], [9], [10], [11], [12], [14]; and (5) the phase-locked

loop [5].

Power spectral estimation has the problem of spectral leakage due to windowing, and the resolution of the

frequency estimate is poor for time-varying applications. The eigen-analysis works well for high signal-noise-ratio

(SNR) and is suitable for communication applications and in sensor array processing. Extended Kalman filtering is

most suitable in nonstationary situations. Both eigen-analysis and extended Kalman filtering suffer from demanding

computational requirements. For control system applications, such as in active control of narrowband acoustic

noise, on-line implementation requires computational efficiency, good stability properties, and fast convergence.

Frequency estimation based on adaptive notch filtering is often preferred. Still, it is a complex task to analyze the

performance of an adaptive notch filter, and the stability is not always guaranteed.

This paper presents a frequency estimator based on a new magnitude/phase locked loop approach. As the name

indicates, the scheme is similar to a phase-locked loop, but a major difference is that the magnitude and the

frequency of the incoming signal are estimated simultaneously. Overall, the estimator has the following features:
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simultaneous estimation of the frequencies, magnitudes and phases of the components of a periodic signal, simplicity

in design and implementation, and fast estimation/tracking of time-varying parameters. Preliminary versions of

the results were presented in [18] and [19].

The algorithm is derived from the “direct” disturbance rejection algorithm presented in [4], with an adjustment

made to improve frequency tracking. The performance analysis of the algorithm using the approximation of [4] is

accurate when the system states are close to the equilibrium, but a desire to guarantee convergence for large initial

frequency error justifies a more advanced study of the nonlinear behavior of the parameter estimation algorithm,

which is presented in the paper. Some design guidelines are given to ensure the desired performance of the frequency

estimation loop, in terms of convergence time and in terms of variance of the estimate in the presence of noise.

The algorithm extracts frequency information from the fundamental component of the signal. A modified

version of the algorithm is also presented, in which harmonics contribute to the fundamental frequency estimation.

The extension is useful for situations in which the fundamental component of the signal may become small, or

even vanish for some periods of time. Similarly, multiple signals with the same fundamental frequency can also be

combined to yield better frequency estimation results.

2. Basic Adaptive Algorithm

2.1 Description of the Algorithm

Fig. 1 shows a graphical representation of the algorithm. For simplicity of presentation, the periodic signal is

assumed to contain only the fundamental and the third harmonic, so that

d(t) =m1d cos (α1d(t)) +m3d cos (α3d(t)) , (1)

The phase angles satisfy

α̇1d = ωd, α1d(0) = α10, α̇3d = 3ωd, α3d(0) = α30. (2)

The unknown parameters are the magnitudes m1d, m3d, the frequency ωd, and the phase parameters α10, α30.

Variables m1, α1, m3 and α3 are defined to be estimates of the magnitudes and phases of the two components

of the signal, respectively. ω is the estimate of the fundamental frequency. φ3 is defined as the estimate of the

“relative” phase of the third harmonic, that is φ3 = α3−3α1. Finally, the signal d̂(t) is the estimate of the incoming

periodic signal d(t). The equations for the adaptive algorithm shown in Fig. 1 are:

d̂(t) = m1(t) cos (α1(t)) +m3(t) cos (α3(t)) , α1(t) =Kfω(t) +

∫
t

0

ω(τ )dτ,

ṁ1(t) = 2gm
(
d(t)− d̂(t)

)
cos (α1(t)) , ṁ3(t) = 2gm

(
d(t) − d̂(t)

)
cos (α3(t)) ,

ω̇(t) = −2gω
(
d(t)− d̂(t)

)
sin (α1(t)) , φ̇3(t) = −2gφ

(
d(t)− d̂(t)

)
sin (α3(t)) , (3)

where the design parameters Kf , gm, gω, and gφ are all positive. The algorithm has four adaptive parameters,

whose nominal values are ω∗ = ωd, φ∗3 = α30 − 3α10, m
∗

1
= m1d, and m∗

3
= m3d. The algorithm developed

initially from the results of [4] used Kf = 0, which is more intuitive since the phase α1 becomes the integral of the

fundamental frequency. The stability analysis, however, shows that Kf > 0 improves the dynamic response of the

algorithm and simplifies its design.
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Figure 1: Parameter estimator for a signal with a fundamental and a third harmonic

The scheme can easily be extended to periodic signals with arbitrary number of harmonic components by

adding one magnitude estimation loop and one relative phase estimation loop (such as these yielding m3 and φ3)

for every additional harmonic. A similar algorithm can also be developed by replacing the differential equations

by difference equations, and performing the analysis in the discrete-time domain (see [3] for an application to a

simplified algorithm). Here, the frequency estimator is developed and analyzed in continuous-time. Simulations

are carried out using an Euler approximation of the continuous-time algorithm and confirm the analysis.

2.2 Frequency Estimation Loop: Linear Analysis

The frequency loop of the algorithm is similar to a phase-locked loop (PLL). However, there is one aspect that

makes the loop significantly different from a standard PLL: the reconstructed signal is subtracted from the incoming

signal. One consequence is that the magnitude as well as the frequency and phases of the incoming signal can be

estimated with this scheme. Another difference is that the error signal goes to zero when the parameters converge

to their nominal values, so that the frequency estimate converges exactly to the nominal value in the ideal case (in

other words, the steady-state frequency estimate is free from the ripple that is observed in PLL’s).

As for phase-locked loops, useful results are obtained by discarding high frequency terms at the output of the

multipliers. We assume that the frequency estimate ω is close enough to the fundamental frequency ωd for the

approximation to be valid. In this manner, we have:

y12 � −
1

2
m1d sin(α1 −α1d). (4)

The discarding of the high-frequency components is justified by the low-pass property of the filter 2gω/s. An

additional low-pass filter may be added, but simulations show that it is not needed for the satisfactory operation

of the estimator. Notice from equation (4) that the frequency loop is independent of the other three loops after

the high-frequency terms were discarded, which is useful for the analysis.

Defining the phase and frequency estimation errors α̃1 = α1 − α1d and ω̃ = ω − ωd, the differential equations
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that describe the frequency loop are then

dα̃1

dt
= ω̃ − gωm1dKf sin(α̃1),

dω̃

dt
= −gωm1d sin(α̃1)− ω̇d, (5)

The above equations are nonlinear, autonomous, and second-order. A linearized system can be obtained when the

parameters are close to their nominal values and the phase error α̃1 is small. The linear dynamics of the loop are

then those of a second-order system with poles determined by the roots of s2 +gωm1dKfs+ gωm1d = 0. Stability is

guaranteed as both coefficients are positive. With constant ωd, the frequency estimate ω and the phase estimate α1

converge to their nominal values in the steady-state. If the frequency of the incoming signal is increasing linearly,

i.e., ω̇d is constant, ω̃ and α̃1 converge to −ω̇dKf and −ω̇d/(gωm1d), respectively.

2.3 Frequency Estimation Loop: Nonlinear Analysis and Convergence Time

The nonlinear behavior of the frequency estimation loop may be studied using a technique similar to the one found

in [15] pp.124-133. Assuming that the frequency of the incoming signal is fixed, i.e., ω̇d = 0, for the differential

equations (5), the trajectories of (α̃1, ω̃) converge to (nπ, 0) with n an even integer, except the rarely-happening

hang-up at saddle points with n odd. This result implies that the frequency estimate ω converges to ωd. When the

incoming signal contains only one sinusoid, the convergence occurs with an infinite pull-in range. Local stability is

guaranteed for multiple sinusoids. In that case, one must have an initial estimate that is close to the fundamental

frequency of the signal, to make sure that the frequency estimate locks on the fundamental frequency instead of a

harmonic frequency.

In practical situations, the convergence time may be very long for large initial frequency error, so that it is

useful to determine the relationship between the convergence time and the design parameters in order to achieve

desirable performance. Because of the nonlinearity of the system, it is difficult to determine an exact formula, but

two limiting cases can be analyzed.

Case 1: gωm1dKf small: a method similar to the one used in [15] pp.161-168 can be followed, assuming that

gωm1dKf is small compared to the initial frequency estimation error ω̃(0) = ω(0)− ωd(0). Then, the loop will slip

a certain number of cycles before locking up, and the pull-in time is approximately given by

Td �
ω̃2(0)

(gωm1d)
2Kf

, (6)

which is proportional to the square of the initial frequency error. The estimator converges very fast after the system

enters the lock-in region, as Kf is small (the convergence time for the system in the lock-in region will be shown

in Case 2). Note that the convergence time decreases with increasing values of gωm1d and Kf .

Case 2: gωm1dKf large: when gωm1dKf is large compared to ω̃(0), there is no cycle slipping and the system

enters the lock-in region right away. The convergence time is found to be Td = Kf ln (ω̃(0)− ln ω̃
∞
), where the

frequency estimation error ω̃∞ is a small value defining when convergence is achieved. The convergence time Td in

this situation does not depend on the value of gω or m1d, and increases with Kf .

When gωm1dKf is close to ω̃(0), the convergence time may be determined by the combination of the above two

limiting cases. If gωm1d is fixed, the convergence time Td will decrease when Kf increases, as in case 1; Td will also

decrease when Kf decreases, as in case 2. In both cases, Td will decrease when gωm1dKf comes closer to ω̃(0). If
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Kf is fixed, Td will decrease with the increase of gωm1d, as in case 1. When gωm1d is increased to such value that

gωm1dKf is large compared to ω̃(0), Td stays at some value for a fixed Kf , as in case 2. So, it may be assumed

that a good design of the parameters gω and Kf is to make gωm1dKf close to ω̃(0). In practical situations, the

usefulness of the result is limited by the fact that the initial frequency error ω̃(0) and the magnitude m1d are not

known. However, in most cases, some prior knowledge about the value of ω̃(0) and m1d is available, and can be

used to choose the parameters Kf and gω such that the convergence time Td is satisfactory.

2.4 Frequency Estimation Loop: Noise Sensitivity

Usually, the periodic signal is corrupted by measurement noise n(t), whose effect may be analyzed under the

assumption that the noise is white with variance σ2. The incoming signal is assumed to be given by:

d(t) =m1d cos (α1d(t)) +m3d cos (α3d(t)) + n(t), (7)

The output of the multiplier in the frequency estimation loop is, discarding high frequency terms as before

y12(t) = −
1

2
m1d sin (α1(t)− α1d(t)) + ns(t), ns(t) = n(t) sin (α1(t)) . (8)

In the noise analysis of phase-locked loops, one typically assumes that ns is a white noise with variance equal to

σ2/2. The variance of the frequency estimate of the signal can then be found to be:

σ2ω =
gωσ

2

m1dKf

. (9)

While convergence time can be reduced by increasing gω, there is an expected trade-off between convergence time

and noise sensitivity, and the above formulas can be used to choose a desirable setting of the design parameters.

2.5 Magnitude and Phase Estimation Loops

After the frequency loop converges, the other three parameter estimation loops can be approximated as independent

subsystems. The approximate systems for the estimation of the magnitude of the fundamental, the magnitude of

the 3rd harmonic, and the relative phase are respectively given by:

ṁ1 = −gm (m1 −m1d cos(α1 − α1d)) � −gm(m1 −m1d),

ṁ3 = −gm (m3 −m3d cos(α3 − α3d)) � −gm(m3 −m3d),

φ̇3 = −gφm3d sin(φ3 − φ∗
3) � −gφm3d(φ3 − φ

∗

3), (10)

where the second set of equations applies when α1, α3, and φ3 are close to α1d, α3d, and φ∗3. The dynamics of m1

and m3 are first-order, with poles at s = −gm. The dynamics of φ3 are also those of a first-order linear system,

with a pole at −gφm3d. When the fundamental frequency of the incoming signal is constant, the phase estimation

errors become zero in the steady-state, and the magnitude estimates converge to their nominal values.

3. Simulation Results

3.1 Validation of Analysis: Varying gω for Fixed Kf

The validity of the prediction of the convergence time and of the noise sensitivity was examined via simulation.

An Euler approximation of the continuous-time algorithm was used with a sampling frequency of fs = 1000 Hz.
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Figure 2: Convergence time and variance of frequency error as functions of gω (predicted vs. simulation)

The phase estimates α1 and α3 were reset to the range [0, 2π] when new estimates exceeded that range. The

input signal contained white noise with variance of σ2 = 0.012 (which corresponds to a discrete-time sequence

with variance equal to 0.012/Ts, where Ts = 1/fs), leading to a signal to noise ratio of 10 dB. The convergence

time and the variance of the frequency estimate were computed for different values of gω and fixed Kf = 0.4. The

convergence time versus (1/gω)2 is shown in the left of Fig. 2, where the solid line is the predicted convergence

time, and the circles are the convergence times obtained from the simulation. One finds that when gω is small and

gωm1dKf < ω̃(0), the convergence time is satisfactorily approximated by Td = ω̃2(0)/(gωm1d)
2Kf . Increasing the

value of gω will not decrease the convergence time indefinitely. Instead the convergence time has a lower limit,

which is given by constant Td = −Kf (ln ω̃∞ − ln ω̃(0)) for fixed Kf (horizontal line in the figure).

Fig. 2 on the right shows the variance error of the frequency estimate versus gω. Again, the solid line is the

estimated value, and the circles are the ones obtained from the simulation. The match between the actual variance

errors and the predicted values is good. Similar to any other adaptive algorithm, the choice of step size gω is a

trade-off between short convergence time and small variance error, up to the point where gω becomes too large and

the convergence time reaches the lower limit determined by the value of Kf .

3.2 Validation of Analysis: Varying Kf for Fixed gω

Fig. 3 shows the convergence time and the variance error of the frequency estimate versus 1/Kf , for different values

of Kf and fixed gω = 80. The solid line gives the predicted values, and the circles are the values obtained from

the simulation. Fig. 3 on the left shows that the convergence time is approximated by Td = ω̃2(0)/(gωm1d)
2Kf

for small Kf , and by Td = −Kf (ln ω̃∞ − ln ω̃(0)) for large Kf . The match between the predicted values and

those obtained from the simulation is good. The simulation results show that the performance analysis is precise,

although it ignores the high frequency components of the signals originating from the multipliers. Also, the steady-

state bias of the frequency estimate is virtually zero, although more than one sinusoidal component exists in the

incoming signal.
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Figure 3: Convergence time and variance of frequency error as functions of Kf (predicted vs. simulation)

4. Modified Frequency Estimator

4.1 Combination of Different Components

In Section 2, frequency estimation was solely based on the fundamental component, which was assumed to be the

largest component of the signal. However, in some situations, the magnitude of the fundamental component may

become low, while the magnitudes of the harmonics remain significant. It is then beneficial to extract the frequency

information from all the components of the periodic signal. A modification of the parameter estimator is proposed

that enable multiple harmonics of a signal to contribute to the estimation.

Fig. 4 shows the modified algorithm. The part of the scheme responsible for the estimation of the magnitudes

is the same as in the original parameter estimator illustrated by Fig. 1 (called the basic algorithm hereafter). The

equations for the frequency and phase estimation are now, assuming N = 3,

α1(t) = Kfω1(t) +

∫ t

0

ω(τ)dτ, α3(t) = Kfφ3(t) +N

∫ t

0

ω(τ )dτ,

y12(t) = −

(
d(t)− d̂(t)

)
sin (α1(t)) , y32(t) = −

(
d(t)− d̂(t)

)
sin (α3(t)) ,

ω̇1(t) = 2gωy12(t), φ̇3(t) = 2gφy32(t), ω(t) = ω1(t) +
1

N
φ3(t), (11)

The design parameters Kf , gω, and gφ are similar to those in the basic parameter estimator, and N is the number of

the harmonic, which is 3 for this presentation. Similarly, the nominal value of the fundamental frequency estimate

ω is ω∗ = ωd, and the parameters α1, and α3 have nominal values α∗
1
= α1d and α∗

3
= α3d, respectively. However,

the nominal value for φ3 is given by φ∗
3
= (α3d(0)−Nα1d(0)) /(2Kf ) +Nωd/2, which is not the same as in the

previous parameter estimator. Overall, there is a slight, but marginal increase of computational complexity in the

modified algorithm, compared to the basic algorithm shown in Fig. 1.

Again, discarding the high frequency terms at the output of the multipliers and assuming that the parameters

are close to their nominal values, a linear approximation can be found. The analysis shows that the system is

always stable if the design parameters are positive. When the fundamental frequency of the incoming signal is

constant, the frequency estimate ω and the phase estimate α1 converge to their nominal values. An interesting

7



α2g
s Kf

1
s

2g
s

φ

ω
y

y
Kf

1
N

N

α

ω1ω

φ

αsin

αsin

1ω

2ω N

N

N

d(t) - d(t)^
1

1
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feature of the modified algorithm is observed when one of the two components of the incoming signal does not exist.

Then, the frequency estimator reduces to the basic parameter estimator that is based on the non-zero component

of the signal. Noise sensitivity analysis shows that the noise variance is finite as long as one of the components of

the incoming signal is present. In the basic parameter estimator, the variance of the frequency estimate was given

by equation (9), which becomes infinite if the fundamental component does not exist. Details of this analysis are

available in [17].

4.2 Combination of Different Signals

The frequency estimator shown in Fig. 4 can be modified to include components from two different signals. In this

case, the variables y1ω and y2ω in Fig. 4 are obtained from the two signals, instead of from two harmonics of a

single signal. The number N can be any integer that indicates which component of the second signal is combined in

the frequency estimator. Further, the scheme can be extended so that an arbitrary number of components and/or

signals may be combined to contribute to the fundamental frequency estimation.

In general, we assume L incoming signals d1(t), d3(t), ..., dL(t), each of which contains I components. In the

following definitions, i = 1, 2, ..., I , l = 1,2, ..., L. Define the variables yl,is = (dl − d̂l)(− sin(αl,i)), where d̂l are

the corresponding estimated signals, and αl,i represents the estimated phase of the ith component of the lth signal.

The variables yl,ic are defined to be yl,ic = (dl − d̂l) cos(αl,i). To describe the modified parameter estimator in a

compact form, we define the vectors

Ys =

[
Y

T

1s
Y

T

2s
... Y

T

Is

]T
, Yc =

[
Y

T

1c
Y

T

2c
... Y

T

Ic

]T
,

Yis =

[
y1,is y2,is ... yL,is

]T
, Yic =

[
y1,ic y2,ic ... yL,ic

]T
(12)

We also define the corresponding estimated magnitude and phase vectors

m =

[
m

T

1
m

T

2
... m

T

I

]T
, φ =

[
φ
T

1
φ
T

2
... φ

T

I

]T
,

mi =

[
m1,i m2,i ... mL,i

]T
, φ

i
=

[
φ1,i φ2,i ... φL,i

]T
(13)

The magnitude and phase estimates are updated according to ṁ = 2gmYc, φ̇ = 2gωYs, where diagonal matrices
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gm and gω are given by

gm = diag (g1,1m g2,1m ... gL,1m ... g1,Im g2,Im ... gL,Im),

gω = diag (g1,1ω g2,1ω ... gL,1ω ... g1,Iω g2,Iω ... gL,Iω). (14)

The frequency estimate is obtained by

ω =

[
1 1 ... 1 1/2 1/2 ... 1/2 ... 1/I 1/I ... 1/I

]
φ. (15)

Defining the vector containing the phases of the components of the signals

α =

[
αT
1

α
T

2
... α

T

I

]T
, αi =

[
α1,i α2,i ... αL,i

]T
(16)

such that

α =

[
1 1 ... 1 2 2 ... 2 ... I I ... I

]T
α0+Kfφ, α̇0 = ω. (17)

If the elements of the matrix g
ω
are chosen such that,

g1,1ωm1,1d = g2,1ωm2,1d = ... = gL,1ωmL,1d = ... = g1,Iωm1,Id = ... = gL,IωmL,Id = K, (18)

the characteristic equation for the frequency estimator is given by

(s+K Kf )
N−1(s2 +K Kfs+ JK ) = 0, (19)

where J is the total number of the components that are included in the fundamental frequency estimation. The

characteristic equation shows that, with this choice, the system is stable for all positive values of Kf and K. The

dynamics of the magnitude estimates are decoupled and first-order, with poles at s = −gl,im for ml,i.

The combination of the components of different signals in the fundamental frequency estimation makes the

estimator more flexible, as it is not necessary to know a priori which components exist or which component is the

most suitable to base the frequency estimation on. The modified algorithm is especially useful when the magnitudes

of the components of the signals change significantly with time.

5. Simulation and Experimental Results

5.1 Simulation Results

A comparison between the basic and the modified estimators was performed via a simulation. In the simulation, the

periodic signal was chosen to contain a fundamental and a 2nd harmonic, with the fundamental frequency increasing

linearly from 148 Hz to 176 Hz in 3.5 seconds. The simulation was designed to illustrate a rather extreme case

where the magnitude of the fundamental completely vanished for some period of time (between 1 and 1.5 seconds

in the experiment). The measurement noise contained in the signal was set to be white noise with variance of 0.01.

The sampling frequency is set to f
s
= 2000 Hz.

Fig. 5, on the left, shows the frequency tracking performance of the basic parameter estimator. The basic

parameter estimator is not able to track the changing frequency of the signal when the magnitude of the fundamental
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Figure 5: Frequency tracking of the basic estimator (left) and modified estimator (right)

component becomes zero. Fig. 5, on the right, shows that the modified parameter estimator tracks consistently the

frequency of the signal. The modified parameter estimator has better stability properties and tracking performance

than the original estimator at the cost of only a slight increase in computational complexity.

5.2 Experimental Results

The performances of the modified frequency estimator was also investigated with experimental data. The incoming

signals were obtained from an active noise control testbed. The testbed consisted in a Motorola’s DSP96002 32-bit

floating-point digital signal processor hosted in a PC, microphones, and bookshelf speakers with a 4-inch low-

frequency driver. For the experiments of this paper, one of the speakers generated a periodic signal constituting

the noise source. The signals were collected by two microphones about 2.7 ft apart. These signals were passed

through an anti-aliasing filter and sampled by a self-calibrating 16-bit analog-to-digital converter before being

recorded by the DSP system. The sampling frequency fs = 2000 Hz. The incoming signals, shown on the left of

Fig. 6, were collected by the two microphones when a sound wave with a fundamental and a 2nd harmonic was

produced by the loudspeaker. The amplitudes of the source signal were fixed, while the fundamental frequency

increased linearly from 100Hz to 220Hz in 10 seconds. Due to the acoustic properties of the room, the amplitudes of

the components of the signal collected by the microphone rapidly changed with the frequency. At some frequencies,

the fundamental was very small.

Fig. 6 on the right shows the frequency tracking performance of the modified parameter estimator with L = 2

and I = 2, i.e., both components of the two signals were used in the fundamental frequency estimation. The design

parameters for magnitude estimation gl,im with l = 1, 2 and i = 1,2 were all set to 20. The design parameter Kf

was set to 0.06, and gl,iω with l = 1,2 and i = 1, 2 all to 6000. The modified parameter estimator is found to track

the changing frequency of the signal consistently throughout the experiment.

6. Conclusions

In this paper, a magnitude/phase-locked loop parameter estimator was proposed which simultaneously estimated

the frequencies, magnitudes and phases of the sinusoidal components of a signal. The signal was assumed to contain
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Figure 6: Incoming signals (left) and frequency tracking of the modified estimator (right)

a fundamental component and multiple harmonics. In the basic algorithm, the frequency estimation was based on

the fundamental component, although the integer multiplicative relations between the fundamental and harmonics

were exploited in the signal reconstruction. The gain Kf improved the dynamic response of the frequency estimation

loop and simplified its design. The estimates were unbiased and ripple-free when the signal contained no noise and

the parameters of the signal were constant.

A modified version of the algorithm provided improvements for situations in which the fundamental component

of the signal could become small, or vanish for some periods of time. In this case, information from all components

of the signal were used in the fundamental frequency estimation. Multiple signals with the same fundamental

frequency were also combined to yield consistent estimation results despite changes in signal characteristics. In

consequence, an advantage of the modified algorithm over the basic algorithm is that it is not necessary to know

a priori which component is the most suitable to base the frequency estimation on. The algorithms were designed

with real-time tracking applications in mind. They were simple in design and implementation, and effective in

tracking time-varying parameters. The linear time-invariant approximations gave useful information about the

dynamic behavior of the system, the trade-off between convergence speed and noise sensitivity, and the selection

of the design parameters.
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