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Problem 1.2: the problem is designed to develop familiarity with Simulink.
A tutorial is available on the web site showing how the system can be built

and simulated. The objective is to simulate the response of the RL circuit of
Fig. 1.25.

Figure 1.25: RL circuit for Problem 1.2

(a) Simulate the response of the RL circuit with a voltage
v(t) = Vppcos(2mf t), (1.47)

applied at t = 0's. Let V;, =2 V and f = 60 Hz. Fig. 1.26 shows an implemen-
tation using blocks from the file generator_blocks.mdl available on the web site.
Blocks can be dragged to the simulation file blank.mdl, which can be renamed
as desired. Adjust the RL circuit parameters so that R =1 Q and L = 30 mH.
Run the simulation for 0.3 s and plot the voltage and the current as functions

of time.
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Figure 1.26: Simulation of an RL circuit with a sinusoidal voltage

(b) In the Command generator block, let V,, = 0 for t < ty and V, =2V
for t > to, where tg = 3/4 T and T is the period of the sinusoidal voltage.
Note that this adjustment is equivalent to replacing the cos function applied
previously by a sin function. Plot the voltage and the current as functions of

time, and observe that the transient current is much larger than in part (a).
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Estimate the percentage overshoot of the current compared to the steady-state
value.
Problem 1.3: (a) Consider the analytic expression for the coefficient of power

of a wind turbine proposed in [18], or

c
Cp(N) = <§—11 - 02) e M, =< _ACM. (1.48)
Find analytic expressions for Aopr, the TSR for which Cp()) is maximum, and
for Aprax, the TSR for which Cp()) is 0.
(b) Using the results of part (a), compute A\opr, Copr, and Ayrax for ¢; = 58,
co = 2.5, ¢ = 21, and ¢4 = 0.035. Plot Cp(\) for A ranging from 1 to 14 and
check that the values that you computed are consistent with the graph.
(c) Assuming a turbine with R = 9 m and a wind speed vy = 10 m/s, plot
Pr, the mechanical power available from the wind turbine as a function of the
turbine speed. Label the axes in kW and rpm. What speed would the turbine
reach if rotating freely (i.e., if Pr = Pg = 0)?
(d) Consider a grid-tied squirrel-cage induction generator (SCIG) connected to
the turbine through a gear, as shown in Fig. 1.22. The generating torque is
given by

TG = —%, (1.49)
where S = wg — npw is the so-called slip frequency in rad/s, wg = 1207 rad/s
is the angular electrical frequency of the grid voltages (at 60 Hz), np = 2 is the
number of pole pairs, and w is the speed of the generator (in rad/s). The model
represents the SCIG using a steady-state approximation. Assume that there are
no friction losses, so that 7pyy = 7¢ and Ppy = Pg in (1.22)).

Let ky = 50, k; = 0.032, and assume that the generator is connected to
the wind turbine of parts (a) to (c) using a gear with ratio G = 29. Plot on
the same graph Pr and Pz = 7w (in kW) as functions of the turbine speed
wr in rpm. The curves should be similar to Fig. 1.8, but with wy on the x-
axis. The values of w} where Pr = F; are the possible operating points of
the turbine/generator set. Using the graph, estimate the speed and the power
generated at this condition.

Problem 1.4: the simulation results of this problem illustrate the computations
of Problem 1.3.
(a) Download the Simulink file wind_turbine.mdl and the data file wind.mat from

the web site, and place the files in the working directory of Matlab. Fig. 1.27
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shows the block diagram of the simulation. There is a switch that directs the
simulation to use either a constant wind speed of 10 m/s or the wind data in
the file wind.mat. You must load the wind data in the workspace by typing load
wind for the simulation to work. Run the simulation for a constant wind speed
of 10 m/s and plot the turbine speed as a function of time over 150 s. Compare

the steady-state value of the turbine speed to the value computed in part (c) of
Problem 1.3.
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Figure 1.27: Simulation of a wind turbine

(b) Insert the model of the generator of Problem 1.3, part (d), in the Simulink
model. Specifically, the torque given in (1.49) should be implemented in a block
connecting the turbine speed wy to the generator torque 77 on the turbine side,
and the generator torque should be subtracted from the turbine torque. The

variables on the turbine side are related to the variables on the generator side
by (1.41), or

w:GwT, TGT:GTG. (150)

Fig. 1.28 shows the block diagram of a possible implementation. The Generator
model block should implement (1.49) with (1.50).

Run the simulation with the constant wind speed of 10 m/s and plot the
turbine speed in rpm as a function of time over 100 s (reduce from 150 s to
match the length of the wind data set). Also plot the generator power in kW as
a function of time. Give your interpretation of what happens during the first few
seconds of the simulation, and compare the steady-state value of the speed to
the value computed in part (d) of Problem 1.3. Finally, compute the efficiency
of the system at the end of the simulation as the generated power Pg over the

maximum available power Py, (available as the variable mazpow).
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Figure 1.28: Simulation of a wind turbine with a grid-tied SCIG

(c) Run the simulation with the wind data instead of the constant wind speed.
Plot the turbine speed (in rpm) and the generated power (in kW) as functions
of time over 100 s. Observe that the turbine speed is nearly constant, even with
variable wind. This property is due to the steep nature of the torque curve of the
generator. Compute the average of P; and Pyy. Deduce a measure of the average
efficiency of the turbine/generator set. Note that, as the turbine speed is much
lower than the value corresponding to Appr at the prevailing wind conditions,
the efficiency is relatively low. A grid-tied squirrel-cage induction generator can
only capture the maximum power at a specific wind speed. Finally, compute the
total electrical energy produced (in kWh) during the period of the simulation.

(d) For the simulation of part (c), plot the wind speed as a function of time and
compute the average wind speed. Compute the average turbine speed, wr, and
the corresponding values of A and Cp. Interpret the results in relation to the

efficiency computed in part (c).
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w is related to the torque 7pp; of the prime mover through the relationship
W =wy —aq17pm, (248)

where wy and g, are positive constants. Assuming that mechanical losses due to
friction are negligible, derive an expression for the droop curve of the generator,
i.e., for the function v(ir).

(b) Repeat part (a) for a prime mover that is controlled so that
W =Wy — QQPPM, (249)

where Pp)s is the power delivered by the prime mover and wy, go are positive
constants.

(c) Assuming that go = g¢1/wy, which of the generators of parts (a) and (b)
would deliver the highest current if the two generators were placed in parallel?
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Figure 2.21: Simulation of a DC generator

Problem 2.4: the objective of this problem is to measure the droop charac-
teristics of DC generators in simulations. Using the file generator_blocks.mdl
available on the web site, build the Simulink diagram shown on Fig. 2.21. The
DCG electrical model block contains the equations of the generator. The Com-
mand generator block is programmed to vary the load resistance while setting
the speed to a constant. Set Max step size in Simulation/Model Configuration
Parameters/Solver to le-3, and Absolute tolerance to le-9.

(a) Set w = 1800 rpm (convert to rad/s) and R, = 120 Q. After 1 s, vary Ry,
from 120 © to 10 Q over a period of 5 s. Plot vy (ir) after removing the first
second of data. Relate the droop rate to the parameter R in the DCG electrical
model.

Note: although R; varies as a function of time, the variation is sufficiently
slow that one can plot the steady-state characteristic approximately using the

time-varying simulation data.
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(b) Modify the simulation to have two identical DC generators in parallel.
Fig. 2.22 shows a possible implementation. Let w; = wy as in part (a). Plot
vr(iz), vr(ip1), and vr(ig2) on the same graph. Then, repeat the simulation
after multiplying the parameter R in the second generator model by a factor of

2. Discuss the results.
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Figure 2.22: Simulation of two DC generators connected in parallel

Problem 2.5: (a) A shunt DC generator is a wound-field DC generator where

the armature and the field windings are placed in parallel, resulting in the model

di . .
LE = v— Ri— Kripw
di .
LFd—f — v — Rpip. (2.50)

Assuming that the generator is connected to a purely resistive load, one has the

additional equation
v = —RL(i + ZF) (251)

Assume that the speed w is constant and that, at t = 0, the currents are 7(0) = 0,

ir(0) = ipo. Denoting I(s) = L(i), the Laplace transform of the current i(t),
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compute I(s) as a function of ipg. Recall the formula

di

L(=)

= sL(i) — i(0). (2.52)

The result should be a transfer function from iy to /(s) with a denominator of

degree 2.

(b) From the transfer function of part (a), compute the speed above which the

transfer function is unstable, i.e., the minimum speed required for self-excitation.

Determine the number and nature (real or complex) of the unstable pole(s).

Problem 2.6: (a) Consider the self-excited series DC generator with the model
dig,

LTE =—(Rr+Ry) i+ Ky w+ Kp(in) ip w. (2.53)

The term K, w was added to (2.40) to represent the effect of residual magnetism
in the machine. Using the file generator_blocks.mdl available on the web site,
build the Simulink diagram shown on Fig. 2.23. The SEDC electrical model
block contains the equations of the generator. The Command generator block
is to be programmed to provide the speed profile. Simulate the response of the
system when the speed increases linearly from 0 to 3200 rpm in 10 seconds. Plot
the voltage on the load v;, = Rpi, as a function of the speed in rpm and observe

the rapid rise of voltage once a certain speed is reached.
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Figure 2.23: Simulation of self-excited DC generator

(b) Compare the value of the speed where the voltage rises rapidly to the value
that can be predicted from (2.42) using the parameters of the simulation model
(neglecting K ).

(c) Switch the sign of K/ in the simulation and discuss the results.

Problem 2.7: consider the system shown on Fig. 2.24 where two identical DC
machines are connected in parallel electrically, and the first machine (generator)

is driven by a prime mover while the second machine (motor) rotates freely.
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In other words, the three-phase reactive power of (3.39) is the two-phase reactive
power of (3.25) scaled by 3/2.

(3.106) and (3.107) provide instantaneous estimates of active and reactive
power. (3.106) is the true instantaneous active power. However, (3.107) is an

extension of the value defined for balanced, steady-state conditions.

3.6.3 Relationship to Fortescue’s transformation

While Fortescue’s transformation was applied to phasors that are constant com-
plex numbers, the 3—2 transformation is applied to real signals that are functions
of time, Fortescue’s transformation assumes sinusoidal steady-state operation,
but the 3 — 2 transformation does not.

In sinusoidal steady-state, v,, vs, and v, are described by phasors Vi, V5,
and V,. Using (3.96), (3.97), followed by (3.86),

— 2 [— 1— 1— - —
V., = §<VA—§VB—§V0) =Vi+V,

2 _ o
Vi = 3 TVB_TVC =j(Voa—V1)

— Vit Vae+Ve —
V, — A+ 3B+VC _7, (3.108)

In other words, the variables computed through the 3 — 2 and Fortescue trans-

formations are closely related.

When applied to systems, the 3 — 2 transformation decouples the homopolar
variable from the other variables, as Fortescue’s transformation. However, both
two-phase variables generally remain different from zero, even if only the positive
sequence component is present

Fortescue’s transformation is typically used for the analysis of faulted power
systems and the design of protection circuits assuming sinusoidal steady-state [1].
On the other hand, the 3—2 transformation is used to analyze transient dynamics
and to implement real-time control systems. Several examples of application will
be presented in the following chapters.

3.7 Problems

Problem 3.1: the objective of this problem is to explore concepts of single-
phase power.
(a) Create a Simulink diagram to simulate the response of a series RL circuit

with a voltage v(t) as the input and a current i(t) as the output. Fig. 3.22 shows
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an implementation using blocks from generator_blocks.mdl available on the web

site. The block Sinusoidal excitation produces a signal
v(t) = Vpi cos(wst), (3.109)

where wg = 27 fg. Simulate the response of the system for V,, = 2V, fg =
60 Hz, R =1, and L = 3 mH. Let the simulation time be 0.1 s.

cur
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circuit

Freq Voltage

Sinusoidal

excitation

Figure 3.22: Simulation of an RL circuit with sinusoidal excitation

(b) Add a block to compute the instantaneous power absorbed by the RL circuit,

ie.,

p(t) = v(t)i(t). (3.110)

The average power can be estimated in discrete-time by computing

P(m:% S vak)ialh), (3.111)
k=n+1-N

where vg(k) and i4(k) are sampled values of v(t) and i(t), and N is the number of
samples over which averaging takes place (N should be a multiple of the period
of the signal p(t)).

The averaging formula can be implemented as a recursive algorithm using

va(n)ig(n) — vg(n — N)ig(n — N).

P(n)=Pn—-1)+ N

(3.112)

Fig. 3.23 shows a Simulink diagram (from the file generator_blocks.mdl available
on the web site) of an implementation of the recursive filter (3.112) with N =
167. The averaging window of 167 samples corresponds to one period of a 60 Hz
signal (or two periods of the instantaneous power signal) at a sampling frequency
of 10 kHz. The sampling period Ts = 10~ s should be set in the delay blocks,

or as a parameter in Matlab’s workspace.
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Figure 3.23: Averaging filter

Add the averaging filter to the Simulink diagram of the RL circuit to compute
the average power. Fig. 3.24 shows a Simulink block diagram that includes the
averaging filter, together with a solution for parts (b)-(d).
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Figure 3.24: Simulink diagram for Problem 3.1

(c) Add blocks to compute Vs = Vpi,/ V2 and an estimate of I,,,,s using

Lims = VAVG(2(1)), (3.113)

implementing the same averaging filter as for the power. Then, compute the

values of the apparent power
S = Vimslrms (3.114)
and of the reactive power

Q=+/5*— P2 (3.115)
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(d) In theory, one should have
P=RI2,. Q=2nfsLI2,... (3.116)

In the Simulink diagram, use these formulas to compute estimates of R and L
based on the estimates of P and (). To avoid division by zero at ¢t = 0, replace
the estimate of I,,,s by 0.1 when the estimate of I,,,, is smaller than 0.1.

(e) Plot v(t),i(t), and p(t), as well as the estimates of R and L as functions
of time. Compare the values observed in steady-state to those used in the
simulation.

Problem 3.2: show that in a balanced three-phase system with voltages (3.30)
and currents (3.36), the instantaneous reactive power given by (3.39) is constant
and satisfies (3.40).

Hint: the following equalities may be helpful

1 1
cos(a)cos(b) = 5 cos(a+b) + o) cos(a — b)

a+b)sin(b_a
2 2

Problem 3.3: Fig. 3.25 shows the representation of an ideal transformer with

cos(a) —cos(b) = 2sin( ). (3.117)

voltages v; and vy on the primary and secondary sides. The notation 1 | «,
means that there are o turns in the secondary for every turn in the primary. In

other words, « is the transformer ratio and, ideally, v, = aw;.

lla

+ \——o+

Figure 3.25: Ideal transformer

(a) The circuit shown in Fig. 3.26 is used in the U.S. to provide dual single-phase
service to residential customers based on a three-phase distribution line. The
voltages vy, v, and v are line-to-ground voltages given by (3.30). The ground
(zero voltage) is connected to the center tap of the secondary of the transformer.
Compute the line-to-ground voltages v4; and vas. Find the value of o such that
the peak voltage of v4; is the same as the peak voltage of v4.

(b) In the circuit shown in Fig. 3.27, the three-phase voltages are the same as
in part (a). The transformer on the left is connected to the center tap of the

transformer on the right. The transformer ratios are o and 8 and are taken to be
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(c) Is it possible to vary the angle ¢ as a function of the power P so that V' is
nonzero and independent of P? In that case, what is the maximum power P
that can be drawn by the load?

Problem 4.3: the objective of this problem is to simulate a PMSG at constant
speed with a variable load. Using the file generator_blocks.mdl available on the
web site, build the Simulink diagram shown on Fig. 4.17. The Power Voltage
Current block provides estimates of the peak voltage, peak current, active power,
and reactive power using (3.43), (3.44), (3.35), and (3.39), with signs of power

changed to give the generated powers.
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Figure 4.17: Simulation of a PMSG with resistive load

(a) Let w = 22.5 rpm (convert to rad/s), leaving the generator disconnected
from the resistive load (set the connection variable con to 0). Plot the three-
phase voltages over a 0.5 s segment. Relate the frequency of the voltages to the
speed of rotation and the number of pole pairs found in the simulation model.
Estimate V,j, the peak magnitude of the back-emf voltage, and relate V,; to
the back-emf constant found in the simulation model. Plot v4(t) together with
—Vpi sin(npf) (use a dashed line for the second variable), and observe that the
signals are the same.

(b) Let Ry, = 2.5 ohms and connect the generator to the resistive load by setting
con =1 at t = 1 s. After another second, vary the load resistance R from 2.5
to 0.25 ohms over a period of 5 s. Plot V,,(I,;) after removing the first two
seconds of data. For the final value of Ry, give the value of the line-to-line rms
voltage (in V), the generated power (in MW), and the power factor.

(c) Replace the resistive load by an RC' load (resistor in parallel with a capac-
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itor). A block is available in generator_blocks.mdl and a Simulink diagram is
shown on Fig. 4.18. Vary Ry, as in part (b) and let C' (in F) = 0.009 /R, (in
ohms). Show that the choice of C' corresponds to setting a constant power factor
and give its value. Plot Vj; (/) as in part (b). For the final value of R, give
the values of the line-to-line rms voltage (in V), the generated power (in MW),
the power factor, and the capacitor (in mF). The values should be similar to
those of the example on p. 86. Comment on the results, in particular the impact
of the additional capacitor on the voltage and power generated on the side of
the load.
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Figure 4.18: Simulation of a PMSG with RC load.
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Problem 5.2: (a) Determine the value of the capacitance that is needed in
Fig. 5.10 so that the capacitor provides 90% of the reactive current for R = 0.3 €2,
L =0.014 H, and fg = 60 Hz. Compare the value to the value of C' such that
60 Hz is the resonant frequency of the circuit.

(b) Repeat part (a) at 120 Hz.

Problem 5.3: (a) Consider the circuit shown in Fig. 5.26, representing a sim-
plified model of a self-excited induction generator in steady-state. Use the loop
impedance method to obtain conditions describing the onset of self-excitation.
Compute the impedance for the loop shown on the figure, where M is in paral-
lel with the two resistances on the right. Derive equations relating the system
variables when the impedance is zero. From these equations, deduce expressions
for the electrical frequency wg, the speed w, and the range of capacitance C' for

self-excitation.

Rp

W
C::mgM g%RR

Figure 5.26: Simplified steady-state model of an SEIG

(b) Apply the results of part (a) to an induction machine with Rg = 0.3 €,
Rr=0.7Q, M =14 mH, and np = 2. For C' = 100 pF, compute the electrical
frequency (in Hz), the speed in rpm, the normalized slip (in %) at the onset of
self-excitation, and the range of capacitance for which self-excitation is possible.
Problem 5.4: the objective of this problem is to simulate a grid-tied SCIG in
conditions similar to the example of p. 108. The active and reactive powers are
plotted as functions of speed, similarly to Figs. 5.5 and 5.6.

Using the file generator_blocks.mdl available on the web site, build the Simulink
diagram shown on Fig. 5.27. The machine is rated for 380 V (line-to-line rms),
50 Hz operation, and has two pole pairs. The simulation should start with the
generator connected to the grid (con = 1) and run for 6 s.

(a) Find a speed such that the machine acts as a motor and produces a mechani-
cal power equal to approximately to 2.2 kW in steady-state. Limit the search to

speeds that are integer numbers in rpm. Give the values of the speed (in rpm),
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Figure 5.27: Simulation of a grid-tied SCIG

the slip (in %), the mechanical power produced, the electrical power absorbed,
the reactive power absorbed, and the rms current at the end of the simulation.

(b) Find a speed such that the machine acts as a generator and produces an
electrical power equal to approximately to 2.2 kW in steady-state. Give the
values of the speed (in rpm), the slip (in %), the mechanical power absorbed,
the electrical power generated, the reactive power generated, and the rms current
at the end of the simulation.

(c) Start the simulation at a speed equal to 85% of the synchronous speed. A
second into the simulation, raise the speed from 85% to 115% of the synchronous
speed over a period of 5 s. Plot Popy(w) and Qeey(w) with the speed labelled
in rpm, and removing the initial second of the simulation so that the electrical
transients do not affect the plots. Use the peak value of Qg gy to find an estimate
of Lg using (5.25).

Problem 5.5: the objective of this problem is to observe self-excitation in a
squirrel-cage induction generator. Using the file generator_blocks.mdl available
on the web site, build the Simulink diagram shown on Fig. 5.28. A Power Voltage

Clurrent block with storage of the variables should also be included, but is not
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shown. Set Ry = 65 €2 and C' = 55 uF.
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Figure 5.28: Simulation of an SEIG

(a) Vary the speed from 1400 rpm to 1600 rpm over 10 s. Plot V,;; as a function
of w in rpm and observe the rapid growth of the voltage once a certain speed is
reached.

(b) Set the speed at 1500 rpm and plot the voltage of phase A of the generator
as a function of time. Then, plot the voltage over about 10 periods of the signal
after 9 s. Observe that the voltage appears sinusoidal, despite the operation in
magnetic saturation. Estimate the frequency (in Hz) and the rms line-to-line
voltage.

(c) Self-excitation begins at a lower speed (around 1200 rpm), but the build-up
of the voltages takes a much longer time. Still, the stability or instability of
the system at a given speed can be determined by zooming on the plot of V
as a function of time. By trial-and-error, determine within 1 rpm the speed at
which self-excitation begins. Plot V,; as a function of time for the two speeds
bordering the unstable behavior.

Problem 5.6: (a) A Y—connected load consists of three identical resistors
placed in parallel with three identical capacitors. What value of resistance cor-
responds to a total absorbed power of 2.2 kW for a line-to-line rms voltage of
380 V?

(b) Let the load of part (a) be connected to a squirrel-cage induction generator.
Consider the simplified per-phase model of Fig. 5.15 with the parameters M =
0.2 H, Rp = 1.87 ), and np = 2. Assume that the generator reaches steady-
state self-excitation for a speed of 1500 rpm. What is the normalized slip S,, of
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line rms back-emf voltage). The range of power in the plot should span from 0
to 900 MW.

Note: be careful with the fact that equations of the book assume that voltages
are peak line-to-neutral voltages and currents are peak line currents.

Problem 6.2: the objective of this problem is to compute the edges of the
reactive power capability curve of Fig. 6.20 for P > 0 and ¢ > 0. The limits
L1 and L2 are given by (6.43) and (6.44), where V and Ej4x are peak line-
to-neutral voltages and Ij;4x is a peak line current. Consider a generator with
a grid voltage equal to 26 kV (line-to-line rms), 60 Hz grid frequency, L =
0.0025 H, and maximum stator current of 22 kA (line rms).

(a) Give the value of the back-emf voltage E (peak line-to-neutral) needed to
connect the generator to the grid with zero power output (origin of Fig. 6.20).
(b) Compute the maximum active power that can be generated and the values
of @ and E needed to obtain that power (point P3).

(c) Assume that E is adjusted so that the curves L1 and L2 intersect at an
operating point with PF = 0.9. Find the values of P, ), and E at that condition
(point P2)

(d) Find the maximum value of @) that can be produced for the value of E =
Eyax obtained in part (c¢), and give the corresponding power P (point P1).
Problem 6.3: consider the droop control scheme shown on Fig. 6.25, letting
Pe = 0 and Pr = 0. Assume that the mechanical dynamics are modeled by
a transfer function H(s) = N(s)/D(s), where N(s) and D(s) are polynomials
in s.

(a) Compute w(s) as a function of wrrr(s) and Prer(s).

(b) Give the polynomial equation that specifies the closed-loop poles of the
system

(c) Assuming that R = 0 and that H(s) is approximated by the DC gain H(0),
show that the system has a single pole and find the value of k; such that the
pole is placed at s = —ap.

(d) Under the same approximation for H(s) but R # 0, compute the pole of the
system for k; computed in part (c).

(e) For the system H(s) = 20/(s + 10), find the k; of part (c¢) for R = 0 and
ap = 1 rad/s. Compute the approximate pole of part (d) for the same k; and
R =0.1. Using part (b), compute the exact poles for the same k; and R = 0.1.
Problem 6.4: the objective of this problem is to simulate the operation of a
WFSG including synchronization, the effect of varying excitation, and the edges
of the operating limits. Using the file generator_blocks.mdl available on the web
site, build the Simulink diagram shown on Fig. 6.44. The PQVC block is not
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shown, but should also be included. The number of pole pairs of the generator
is np = 1, so that the synchronous speed associated with 60 Hz is 3600 rpm.
The prime mover model is such that the speed is 3600 rpm for Ppy; = 0, and
increases by 0.1 pu in steady-state for every 1 pu increase in Ppy;. The model
of damping included with the prime mover ensures a stable system, but is not

meant to be accurate.
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Figure 6.44: Simulation of a WFSG

(a) With the generator disconnected from the grid (variable con=0), set the peak
value of the grid voltage (vgpk) so that the line-to-line grid voltage is 26 kV.
Let the frequency (fg) be 60 Hz. Set the voltage vy = 291 V and the prime
mover power Ppy; = 0.02 pu. Run the simulation for 3 s and verify that the
generator reaches a speed 0.2% (0.1 x 0.02) higher than the synchronous speed
with this power setting. Observe the three-phase voltages of the generator and
of the grid, and note that vy was chosen so that the voltage magnitudes are
approximately the same. Find a time where the voltages are the closest (around
2 s) and connect the generator to the grid by setting the variable con to 1 at that
time. For this purpose, a practical method consists in plotting vg4 — vga and
identifying a time where the waveform is closest to zero. Run the simulation

again for 15 seconds and plot w in rpm as a function of time. Observe that
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the speed drops to the synchronous speed after the connection, although the
response is quite oscillatory. Plot Popy and Qgey as functions of time (in MW
and MVAR) and observe that the generated power is positive in steady-state.
Verify that the steady-state power is 2% of the base power (equal to 991 MW).
(b) Extend the simulation to 75 s. From ¢t = 15 s to t = 75 s, raise the voltage
vp from 291 V to 554 V. Using the new 60 s of data, plot the generated active
and reactive powers (in MW and MVAR) as functions of the field current (in
kA). The field current is labelled ifc in the simulation, Then, plot the rms stator
current (in kA) as a function of the field current. Note that this plot represents
one half of a V-curve. Comment on the results.

(c) The last experiment is designed to follow the reactive power capability curve,
reaching (P, Q) coordinates at (0.02 pu, 0), (0.02 pu, Qrrax), (Prated; Qratea), and
(Prpax,0). The values are close to those of Problem 6.2. Extend the total
simulation time to 210 s. The first two coordinates were obtained in parts (a)
and (b). For the third coordinate, keep vp at 554 V and raise the power of the
prime mover from 0.02 pu to 0.9 pu between t = 80 s and 140 s. Then, between
t = 145 s and t = 205 s, bring vgp down from 554 V' to 464 V and Ppj; from
0.9 to 1 pu. The fourth coordinate is then reached. Using data from 15 s to
210 s, plot the generated active and reactive powers as functions of the prime
mover power. Also plot the reactive power as a function of the active power.
The plot should draw approximately the reactive power capability curve in the

first quadrant of Fig. 6.20. Comment on the results.
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The control problem corresponds to the diagram shown on Fig. 7.12. The
dynamics of the system to be controlled are those of an integrator with a neg-
ative gain. For control design, the gain of the system can be made positive by
switching the sign of Pgrgr before sending it to the PQ control law. The input

power Pry is handled as a disturbance to be rejected.

PN

VREF PREF 4 kg Ype

At(?» C(S)—>G-)—>—S

Figure 7.12: Control system for DC bus voltage regulation

7.5 Problems

Problem 7.1: the objective of the problem is to simulate the responses of a
three-phase converter with DQ control. The converter is connected to a 575 V
(line-to-line rms), 60 Hz grid. A Simulink implementation is shown in Fig. 7.13.
Most of the blocks are available from the file generator_blocks.mdl, specifically
the DQ, (DQ)-1, Grid model, and Grid sync blocks. The Three-phase RL cir-
cuit block is an extension of the single-phase RL circuit, which is obtained by
replacing the scalar variables by 3-dimensional vectors. For this purpose, the
initial condition of the integrator is replaced by the vector [0;0;0]. The vari-
ables edq and idq are two-dimensional vectors containing the d and q variables.
The variables vg, vrl, and irl are three-dimensional vectors representing vapc,
vapc — eapc (the voltage applied to the RL filter), and i4pc.

The resistances and the inductances of the RL elements should be changed to
R =10.001 Q and L = 0.0001 H. The Pgrgr and Qrgr blocks are step functions
from the Simulink library. The values should be set to zero initially, with steps
of Prer = 250 kW and Qrrr = 120 kVAR applied at t = 0.5 s and t = 1.5 s,
respectively. The main task is then to design the D@ control block, which
includes the power control and current control algorithms of Sections 7.3.4 and
7.3.5.

Implement the current control scheme, setting k;c to zero and kpe to a value
such that the closed-loop pole of the control loop is located at s = —100 rad/s.
Add the feedforward power control system. Compute Popy, Qcpy using (7.42)
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Figure 7.13: Simulink diagram of a three-phase inverter and associated controller
for active and reactive power

or a Power Voltage Current block (PQVC). Run the simulation for a period of
2.5 s and plot Popy, Prer, Qcen, and Qrpr as functions of time (in kW and
kVAR). The outputs should track the references with a first-order time constant

corresponding to the choice of closed-loop pole.
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Figure 7.14: Three-phase RC network

Problem 7.2: (a) Consider the circuit of Fig. 7.14. Assume that the three
resistors have the same value R, and that the three capacitors have the same

value C. Let x4, xp, and z¢ be the voltages on the capacitors, v, vg, and vo



8.5. Problems 211

Yw OREF — Prer VRXYZ
—| MPPT |—>@—{ Velocity L | PQ  |oIRSC— DFIG —‘

contro] | _—»|control
QrEF

®

Figure 8.13: Speed control of a DFIG for maximum power point tracking

8.5 Problems

Problem 8.1: the objective of this problem is to simulate the responses of a
DFIG with a basic control scheme and to demonstrate the independent control
of the active and reactive powers. The properties of the DFIG are observed in
idealized conditions, with responses matching the example of p. 194.

Using the file generator_blocks.mdl available on the web site, build the Simulink
diagram shown on Fig. 8.14. Power Voltage Current (PQVC) blocks should also
be added for the stator and for the rotor variables, but are not shown. The
DFIG PQ control block implements the power control law (8.86) together with
the rotor current control law (8.82) where Rg is neglected, kpc = 100, k¢ = 0,
and up is simplified to the first terms of (8.81), i.e.,

UR = RRER + ij(LRgR + M%S) (8.92)

The control parameters are such that the poles are placed at —100 rad/s.

The stepwise commands Poonr, Qconr, produced by the Command generator
are filtered by transfer functions 20/(s + 20) to provide smoother references
Ps rer, Qs rer, to the PQ controller. Set the variable vgpk such that the line-
to-line rms voltage of the grid is 575 V. Let the speed of the generator be 120%
of the synchronous speed for a 60 Hz grid and for a generator with three pole
pairs.

(a) Start with the system disconnected (variable con=0) and with Proy = 0,
Qcom = 0. Run the simulation for 2 s and plot the stator voltage (converted
from peak line-to-neutral to line-to-line rms). Observe that the stator voltage
magnitude converges to the grid value.

(b) Connect the generator to the grid at 2 s and run the simulation for 5 s.
The transient at the time of connection should be small, as the parameters of
the control law are the same as those in the DFIG model. Apply commands
Peoy = 1.3 MW at 2.5 s and Qcon corresponding to a power factor PF=0.9
at 3.5 s. Bring Pooy and Qconr back to zero at 4 s. Plot the generated active
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Figure 8.14: Simulation of a DFIG with DQ control of active and reactive power

and reactive powers (in kW and kVAR) together with their commands over a
period of 3 s after connection of the generator. Next, plot the active and reactive
powers for the rotor. Then, plot the active powers generated by the stator, by
the rotor, and by the sum of the stator and rotor (in kW). Observe that the
machine generates slightly over 1.5 MW (total power). Finally, plot the stator
and rotor currents (converted to Arms) over the same period. Notice that the
rotor current is significantly smaller than the stator current, which means that

a reduced size converter can be used.

(c) Starting at ¢t = 5 s, bring the speed of the generator to the synchronous speed
linearly over 1 s. Keep the speed synchronous for one second. From ¢ =7 s to
8 s, bring the speed from 100% to 80% of the synchronous speed over 1 s, and
leave the speed at 80% afterwards. Run the simulation for 8.5 s. Plot the stator
and rotor voltages from 4.5 s to 8.5 s (converted from peak line-to-neutral to

line-to-line rms). Observe that the magnitude of the stator voltage is at the grid
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value. The rotor voltage is approximately proportional to the absolute value of
the slip, and is smaller than the grid voltage with the limited range of slip of
the simulation. Finally, plot the first two phases (X and Y) of the rotor voltages
and relate the forward /backward sequence of the voltages to the sign of the slip.

Comment on the results.
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In the second step, the feedback loop is closed with a small gain g and the
gain is progressively increased. Hopefully, the feedback improves or at least does
not degrade the response of the local mode. Tuning is stopped when oscillations
appear in the response. Then, the gain is reduced by a factor of 3 and the PSS
is considered tuned. More details on the procedure can be found in [36]. It is
interesting to note that this design procedure could be applied to many other

systems with needs for active damping.

9.5 Problems

Problem 9.1: the objective of this problem is to observe the short-circuit
current of a wound-field synchronous generator. Build the simulation model of
Problem 6.4 and, having connected the generator to the grid with vp at 291 V
and Ppy; at 0.02 pu in part (a), drop Ppys to 0 at ¢ = 15 s. The stator currents
should converge to zero after a few seconds. Apply a short-circuit at ¢ = 30 s by
setting vgpk to zero in the simulation. Plot the currents —i4(t) and —i,(¢) (in
kA) for 3 s after the short-circuit. Estimate the ratio i4(0)/ig(0c0) and the time
constant of the response. Compare the results to values computed using (9.38)
with the simulation parameters. Also plot ia(t) together with i4(t) and —ig(t)
(in the same plot but with a different color than i4), and confirm that +iy(t)
gives the envelope of the stator current.

Problem 9.2: the objective of this problem is to estimate the critical clearing
time of a wound-field synchronous generator. Build the simulation model of
Problem 6.4 and, having connected the generator to the grid with vg at 291 V
and Ppy; at 0.02 pu in part (a), raise vg to 464 V and Ppy to 1 pu at t = 15 s.
At t = 30 s, disconnect the generator from the grid and reconnect it after a
predetermined period of time (switching the con variable to 0 and then back
to 1). Through trial and error looking at the speed response, find an estimate
of the critical clearing time as a multiple of the period of the grid voltages.
The number of cycles should be between 18 and 20. Plot the active and reactive
powers as functions of time (in MW and MVAR) for the highest number of cycles
such that the generator resynchronizes, and for a number of cycles greater by
one. Also plot the speed in rpm and the angle § in degrees for both cases (where
d is computed using (9.7) and 0 is the grid angle thg found inside the grid
model). Deduce an estimate of the critical clearing time in seconds. Let the
time scale for the plots span 10 s from the time of disconnection, but limit the
scale to 1 s for the second plot of § to better view the response. Comment on

the results.
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Note: power transients are very large and the clearing time observed in the
simulation is longer than the time predicted by the theory in (9.99). A major
difference is that the analytical formula assumes a constant current iz, while
the simulation implements a constant voltage vp. In practice, various elements
can affect the clearing time. Nevertheless, the analysis and the simulation make
it possible to observe the basic features of the disconnection and reconnection
of a synchronous generator.

Problem 9.3: assume that an AC voltage source vg is connected to a WFSG
so that vy = vg, vg = vg = 0. The source current is i1g = i4 = —ip — i¢c. The
machine is at standstill and the field winding is short-circuited.

(a) Using the definition of the DQ transformation (9.2), show that

ip—ic

) e Inpl,
V3 (9.121)

(b) Show that vg = 3/2 vy and ig = iy when # = 0. In other words, the
impedance corresponding to vg/ig is 3/2 Z, for this alignment of the rotor.

(c) Show that vg = 3/2 v, and ig = i, when § = —7/(2np). In other words, the
impedance corresponding to vg/ig is then 3/2 Z,.

) 2 . . ) )
Vg + Jug = gvse J"PO, ig + Jjig = <15+j
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