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Abstract

The paper describes real-time simulation programs
that were developed for an undergraduate control sys-
tems course. The implementation of three classical ex-
periments (the ball and beam, the inverted pendulum,
and the flexible beam) as Matlab m-files is described.
The visualization and animation capabilities of Mat-
lab provide a realistic perception of the behavior of
the testbeds, without actual hardware being needed.
A joystick interface enables users to control the sys-
tems manually, providing a fun and educational experi-
ence. Automatic controllers can be designed to gain in-
sight into a variety of concepts, including stabilization
of unstable systems, root-locus properties, frequency-
domain analysis and design, robustness, and discrete-
time implementation of continuous-time systems.
The paper is submitted to the conference as a
poster/interactive paper. Attendees will view the ex-
periments on a laptop, interact with them through
a joystick, and ask any questions that they may
have. The software is available from the web at:
www.ece.utah.edu/˜bodson/fun. The joystick inter-
face is a dynamic link library file requiring a Windows
operating system.
Keywords: control education, real-time visualization,
Matlab, ball and beam, inverted pendulum, flexible
beam.

1. Introduction

Undergraduate control laboratories typically rely on a
number of experiments to illustrate the principles of
feedback design. These experiments are costly, whether
one decides to develop the systems from scratch or to
acquire them from a vendor. The testbeds also require
constant care to stay in satisfactory operating condi-
tion within a teaching lab environment. Real-time ex-
perimentation is, however, greatly beneficial in terms
of providing an understanding of control concepts, and
giving the motivation to study the abstract material of
control theory.
In this paper, we consider three standard experi-

ments found in teaching labs: the ball and beam sys-
tem (sometimes called beam and ball), the inverted
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Figure 1: Controlling a simulated inverted pendulum
through a joystick

pendulum, and a flexible beam. Instead of physical
implementations, we discuss real-time simulations with
visualization that avoid the costs and risks associated
with actual hardware (see Fig. 1). Because the code
is based on Matlab, students can easily and rapidly
modify the code and experiment with a variety of con-
trollers. They can also pursue these efforts at home. In
contrast to the typical commercial systems, the simu-
lated systems can be controlled manually through a joy-
stick interface. Manual control is a great opportunity
to have fun and to get better insight into the challenges
of control. The simulation programs can also easily be
modified to incorporate more complex models, or more
elaborate systems.

2. Animation, Visualization, and Real-Time
Control in Matlab

The simulations are coded as m-files in Matlab, tak-
ing advantage of simple, yet powerful Matlab functions
for drawing and animation. The following macro illus-
trates the basic functions used in the simulations:

figure(1);clf;axis([-0.48 0.48 -0.16 0.16]);

set(1,’pos’,[20 350 940 300]);hold on;

xbeam=[0.4;0.4;-0.4;-0.4];
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Figure 2: Snapshot of Matlab figure

ybeam=[-0.006;0.006;0.006;-0.006];

beam=fill(xbeam,ybeam,’green’,’EraseMode’,...

’background’);

dt=0.05;t=0;tm=0;nt=0;done=0;tic;

while (done==0);

while tm<nt;tm=toc;end;t=nt;nt=t+dt;

theta=0.2*sin(t);

cth=cos(theta);sth=sin(theta);

rbeam=[xbeam ybeam]*[cth sth;-sth cth];

xrbeam=rbeam(:,1);yrbeam=rbeam(:,2);

set(beam,’Xdata’,xrbeam,’Ydata’,yrbeam);

drawnow;

end;hold off;

Running the macro in Matlab will create a figure, re-
produced on Fig. 2. The rectangle on the figure will os-
cillate around its center by ±11 degrees, with a period
of about 6 seconds. The rectangle represents the beam
in the ball and beam experiment to be discussed later.
The code uses Matlab’s ability to draw polygons (func-
tion fill), to rapidly change the coordinates of their ver-
tices (function set) and to update their representation
in a figure for animation (function drawnow). The ar-
gument ’pos’ in the function set defines the size of the
figure on the screen, with the argument in brackets be-
ing: [position from left, position from bottom, width,
height]. The values are appropriate for a monitor with
1024x768 pixels, but may be changed if needed.

The program will run continuously until stopped by
typing “Ctrl-C.”. It can easily be modified to run for
a fixed period of time, if desired. The tic command
in Matlab initializes the timer and the toc command
returns the new value of time. In an iteration of the
”while” loop, t is the current value of time. dt is the
sampling period. The program waits the new value of
time specified by nt before going through a new iter-
ation. One difficulty with Windows machines is that
the precision of the timer is low. On the Windows 98
machines that we tested, the toc function returned sev-
eral values equal to 0, then 0.05, 0.11, 0.16, and so
on. Therefore, sampling rates above 20Hz could not be
implemented. On a Windows XP machine purchased
recently, the minimum sampling time was somewhat
lower (0.016s). Fortunately, a sampling frequency of
20Hz was found adequate for visualization of the ex-
periments described in this paper.

3. Ball and Beam

3.1 Simulation Model
The ball and beam (or beam and ball) system is an
educational experiment that is fun to watch and play
with. Several research papers have used it as an ex-
ample, including [5] and [11]. A diagram is shown in
Fig. 3. A beam is attached to a motor so that its an-
gle θ with respect to the horizontal can be controlled
at will. A ball is placed on the beam and is free to
roll under the action of gravity (a small channel in the
beam may keep the ball from rolling sideways). The
distance of the ball from the center of the beam is de-
noted x. The ball can be placed at any location on the
beam, and will stay there if its velocity v is zero and
the beam angle is zero.
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Figure 3: Ball and beam system

Assuming that the only force acting on the ball is
gravity and assuming that the ball slides on the beam,
the movement of the ball is determined by Newton’s
law

m
d2x

dt2
= −mg sin(θ) (1)

where g is the acceleration of gravity andm is the mass
of the ball. If the ball rolls on the beam, instead of
sliding, the rotational inertia of the ball adds itself to
the translational inertia, resulting in a factor of 5/7 in
the right-hand side of the equation of motion. The
state-space model describing the movement of the ball
is then

dx

dt
= v,

dv

dt
= −5

7
g sin(θ). (2)

where x is the position of the ball and v is its velocity.
More detailed models have been used in the litera-

ture (see, e.g., [12]), accounting for the beam dynamics
and for nonlinear effects such as the centrigugal force
acting on the ball. We have found that nonlinear effects
were small in a typical laboratory experiment, and that
controlling the system manually with motor torque as
an input was very difficult, if not impossible.
Assuming that the angle θ is small, and replacing

sin(θ) by θ, the transfer function of the linearized sys-
tem becomes the so-called double integrator, which is
often encountered in control applications. Newton’s
law, F = m.a, generally yields this transfer function if
force is the control variable and position is the output
variable. Moving a spacecraft with thrusters is a prac-
tical example of such a system. Therefore, the control



problem for the double integrator is very common, and
representative of many applications.
The model of the ball and beam system is imple-

mented in the Matlab simulation bbeam.m, available
from the web. The length of the beam matches a ball
and beam system available at the University of Utah
and developed as part of an earlier effort [9]. An Euler
approximation of (2) is implemented. The sampling
period is set to 0.05s, or a frequency of 20Hz. The con-
trol signal is the angle of the beam and is limited in
the code to ±5 degrees. The position of the ball and
the velocity of the ball are available for feedback, al-
though a practical design requires reconstruction of the
velocity. In the simulation program, the position of the
ball is limited to the length of the beam (±0.4m) by
setting the velocity to zero when the end of the beam is
reached. Friction of the ball rolling on the beam is sim-
ulated by setting the velocity to zero if the ball velocity
and the beam angle are small enough.
3.2 Manual & Automatic Control
The simulation program gives the option of manual
control or automatic control. Manual control is imme-
diately available through the joystick interface, while
automatic control requires that the user provide the
appropriate m-files. Manual control is a good oppor-
tunity for students (as well as the instructor!) to have
fun and to get a sense for the challenges of control-
ling the system. Two lines are drawn on the beam and
an objective is to move the ball from one line to the
other as fast as possible. A difficulty is the tendency
to overshoot the target position, due to the velocity of
the ball. After a few trials, one learns to incorporate a
perception of the ball velocity in the control strategy.
For automatic control, two m-files must be writ-

ten: a file called bbeamc.m containing the control al-
gorithm, and an initialization file called bbeamcinit.m.
The initialization file is called once before the simula-
tion starts, while the control algorithm is called at the
same rate as the ball and beam simulation. The pro-
gram does not store the time histories of the signals,
but it is a simple exercise to add the appropriate in-
structions to the code. As a controller, a proportional-
derivative (PD) controller can be chosen, so that

θ = kpe+ kv
de

dt
, with e = xREF − x (3)

Assuming that both the ball position and the ball ve-
locity can be measured, and neglecting dxREF /dt, the
control law may be implemented simply with

θ = kpe− kvv (4)

Choosing the parameters kp and kv so that the two
closed-loop poles are real and equal, with an associated
time constant of 0.3 seconds, yields good results. The
ability of a simple control law to rapidly move the ball
from one side of the beam to the other is surprising,
and particularly impressive after having struggled with
the challenges of manual control.

4. Inverted Pendulum

4.1 Simulation Model

The inverted pendulum system is a favorite experiment
in control system labs. It is used as an example in many
textbooks, including [4] and [8]. The highly unstable
nature of the plant enables an impressive demonstra-
tion of the capabilities of feedback systems. The in-
verted pendulum is also considered a simplified repre-
sentation of rockets flying into space.

θ

x

2L

Figure 4: Inverted pendulum system

Fig. 4 shows a diagram of the experiment. A cart
rolls along a track, with its position x being controlled
by a motor. A beam is attached to the cart so that
it rotates freely at the point of contact with the cart.
The angle of the beam with the vertical is denoted θ,
and an objective is to keep the angle close to zero.
Since the pendulum may be stabilized at any position
on the track, a second objective is to specify the track
position. However, recovery from non-zero beam angles
may require significant movements of the cart along
the track, and stabilization may be impossible if an
insufficient range of motion remains.

A model of the inverted pendulum may be derived
using standard techniques. A careful derivation [6]
gives the equation

(I +mL2)
d2θ

dt2
+mL cos(θ)

d2x

dt2
= mgL sin(θ) (5)

wherem is the mass of the beam, 2L is the length of the
beam, I = mL2/3 is the moment of inertia of the beam
around its center of gravity, and g is the acceleration
of gravity. For small angles θ, it follows that

4

3
L
d2θ

dt2
− gθ = −d

2x

dt2
(6)

and, the transfer function of the system is

Θ(s)

X(s)
=

−s2
(4/3)Ls2 − g (7)



The system has poles at s = ±p3g/4L. The positive
root is unstable, and instability worsens when the beam
is short. Another tricky problem is that the system
has two zeros at s = 0. This is due to the fact that
an acceleration of the cart is required to impact the
beam angle. On the other hand, this property makes
stabilization possible for arbitrary cart positions.
More complex models assume that the control vari-

able is the force applied to the cart, rather than its
position. This assumption is more realistic, but makes
manual control very difficult. Instead, the simulation
program invpend.m assumes that some type of inner
control loop provides tracking of position commands
for the cart. The delay in the motion of the cart is
represented by the response of a first-order system

X(s) =
f

s+ f
Xcom(s) (8)

where xcom is the commanded cart position, x is the
cart position, and f > 0. The overall transfer function
of the system is then

Θ(s)

Xcom(s)
=

bs2

(s+ a)(s− a)(s+ f) (9)

where a =
p
3g/4L, b = −3f/4L.

The program assumes that L = 2 meters, and that
x is limited to ±L. The beam angle is prevented from
exceeding ±30◦. The value of f is 5, so that the cart
responds relatively fast to commands. Even so, the
system is difficult to control manually. The program
has a “cheat” variable that allows one to make the
problem easier. The variable reduces the magnitude of
the gravity constant, and the choice cheat = 6 is preset
in the program (it is as if one controlled the pendulum
on the moon!). The system is simulated in discrete-
time by assuming a sampling rate of 20Hz and using a
zero-order-hold equivalent system.
4.2 Manual and Automatic Control
It takes some time to learn how to keep the beam bal-
anced. Because of the instability, the system requires
constant attention. As for the ball and beam system,
one finds that perception of the angular velocity of the
beam is critical to the success of the control strategy.
Once one feels comfortable with balancing the beam,
one may try to reduce the “cheat” variable, or to move
the cart from one line drawn on the track to the other.
For automatic control, one should first design a stabi-

lizing controller. The controller transfer function must
be implemented in a file invpendc.m, with its initializa-
tion in a file invpendcinit.m. Given (9), an interesting
exercise is to show that the system can only be stabi-
lized by an unstable controller. Among possible choices,
the second-order controller

C(s) =
Xcom(s)

−Θ(s) = k
(s+ a)(s+ f)

(s− a)(s+ c) (10)

is a simple one. After cancellations, the closed-loop
system only has three poles. It is possible to choose

the controller parameters k and c so that the three
closed-loop poles are placed at s = −a/2. The prob-
lem is a good opportunity to apply root-locus methods,
the Nyquist criterion, gain and phase margin concepts,
and discrete-time implementation of continuous-time
systems.
As a second step, one may design a controller such

that an arbitrary set-point of the cart position can be
imposed. The previous controller may be replaced by

Xcom(s) = Cf (s)Xref (s)− C(s)Θ(s) (11)

This is an unusual configuration for a feedback sys-
tem, because the reference command is applied to the
plant input rather than the controller input. Without
Cf (s), the response exhibits overshoot, due to a low-
frequency zero of the transfer function from Xref (s) to
X(s). Cf (s) can be chosen as a first-order filter with
unity DC gain and a pole placed to cancel the low-
frequency zero.

5. Flexible Beam

5.1 Simulation Model
Systems with lightly-damped complex poles (reso-
nances) are encountered in many applications. An ex-
ample is a large robotic arm in space, whose transversal
dimensions are made small to reduce weight. The arm
will bend and oscillate if moved rapidly. In a com-
puter disk drive, a read/write head is attached to the
end of a small, rigid structure that is rotated rapidly
to access various tracks. When the head is positioned
within fractions of microns, even such a rigid structure
behaves like a flexible structure.

θ

φ

Figure 5: Flexible beam

The diagram of the flexible beam is shown on Fig. 5.
Research papers on this subject include [2], [3], [7],
[10], and [13]. The angle of the beam at the shaft is
denoted θ, while φ is the angle at the tip. Experi-
mental data was collected on a flexible beam of length
0.4m available at the University of Utah and used in
previous experiments [1]. Fig. 6 shows the frequency
response that was measured from the motor current



to the angular acceleration of the shaft, while Fig. 7
shows the response measured from the motor current to
the angular acceleration of the tip. The acceleration at
the shaft was obtained by measuring the position with
an encoder (and multiplying the frequency response by
−ω2 to obtain the acceleration), while the accelera-
tion at the tip was obtained with an accelerometer.
The plots show the experimental data (solid lines), as
well as the approximate fits obtained with fourth-order
models (dashed lines).
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Figure 6: Frequency response of the flexible beam from
motor current to shaft angular acceleration

The approximate models shown on the plots are
given by

s2Θ(s)

I(s)
=

kθ(s− z1)(s− z∗1)(s− z2)(s− z∗2)
(s− p1)(s− p∗1)(s− p2)(s− p∗2)

s2Φ(s)

I(s)
=

kφ(s− z3)(s− z4)(s− z5)(s− z6)
(s− p1)(s− p∗1)(s− p2)(s− p∗2)

(12)

where p1 = −3+74j, p2 = −3+215j, z1 = −0.07+18j,
z2 = −0.07 + 180j, z3 = 100, z4 = −120, z5 = 200,
and z6 = −300 (note that the poles are very lightly
damped). The input variable is the current in the mo-
tor, measured in A, and the angles θ and φ are mea-
sured in radians. The constants kθ and kφ are such
that the DC gains of the transfer functions are equal,
with

kp =

µ
s2Θ(s)

I(s)

¶
s=0

=

µ
s2Φ(s)

I(s)

¶
s=0

= 5.5 (13)

The equality for θ and φ follows from the fact that there
is no bending of the beam near zero frequency. For low
frequencies, the transfer functions are approximately
given by

Θ(s)

I(s)
' Φ(s)
I(s)

' kp
s2

(14)

This approximation of the system is the double integra-
tor encountered with the ball and beam system. The
feedback design is more difficult than for the ball and
beam, however, because of additional poles close to the
jω-axis, and because of zeros close to the jω-axis and
in the right half-plane.
The continuous-time model was discretized assuming

a sampling period of 200Hz. Since the program runs at
a rate of approximately 20Hz, the visualization slows
the dynamics by a factor of 10. This result is help-
ful, because the dynamics of the actual system are too
fast to be controlled manually. For visualization, the
deflection of the beam was assumed to be quadratic.
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Figure 7: Frequency response of the flexible beam from
motor current to tip angular acceleration

5.2 Manual and Automatic Control
Similarly to the ball and beam and inverted pendulum
simulations, two lines are drawn on the screen to pro-
vide an objective of moving the beam from one line to
the other. Two difficulties are encountered: the 1/s2

behavior and the flexibility of the beam. Because of the
double integrator, the user will tend to stop the beam
too late and to apply large commands, exciting vibra-
tions. Resonances can be avoided by moving the beam
slowly, but performance is unimpressive. It is enlight-
ening (and fun) to excite the resonances by applying
commands in the same frequency range as the flexible
modes. Once this mechanism is understood, one may
return to the task of rapidly moving the beam from
side to side without exciting such resonances.
For automatic control, files flexc.m and flexcinit.m

must be written. The flexible beam is a good opportu-
nity to explore design in the frequency-domain. A lead
controller may be designed with

C(s) =
I(s)

Φref (s)− Φ(s) = kc
(s+ b)

(s+ a)
(15)

where the tip angle φ is the output to be regulated and



φref is the reference value. Keeping only the first res-
onant mode in (12), one may compute analytically the
values of the controller parameters kc, a, and b such
that the phase margin is 60◦, the gain margin is 10,
and the phase crossover frequency matches the first
resonant frequency ωn (approximately). A discrete-
time equivalent of the control system must be obtained,
for implementation. However, discretization should be
based on a 200Hz sampling frequency (visualization
will show the system at a rate slowed down by a factor
of 10).
The lead controller design produces a relatively slow

response and a large overshoot due to the low frequency
zero at s = −b. The results can be improved by cas-
cading the lead controller with a notch filter and by
prefiltering the reference input, so that

I(s) = C(s)Cn(s) (Cf (s)Φref (s)− Φ(s)) (16)

C(s) is the lead controller (15) and

Cf (s) =
1.2b

s+ 1.2b
, Cn(s) =

s2 + ω2n
s2 + 2ωns+ ω2n

(17)

where b is the zero of C(s), and ωn is the natural fre-
quency of the first resonant mode. The prefilter elim-
inates the overshoot, and the notch filter allows one
to increase the crossover frequency and the speed of
response. With these modifications, the response of
the system is much improved and, as with previous de-
signs, impressive compared to what can be achieved
manually.

6. Conclusions

Three Matlab simulation programs were described that
emulate the experience gained with classical testbeds
for control design and implementation. Real-time vi-
sualization gives a picture of the results obtained, with-
out actual hardware being needed. In contrast to the
usual experiments, users can “play” with the systems
through a joystick interface, enabling them to gain an
appreciation for the challenges of control. Although
no match to the latest video games on the market,
the experiments are great fun, and it can be an ex-
citing experience to rapidly test and modify control
laws. The experiments may be used to illustrate funda-
mental issues in control systems, including stabilization
of unstable systems, pole placement, frequency-domain
compensation, effect of actuator saturation, discrete-
time implementation, and others. The code may also
be modified easily to implement more complex mod-
els (including nonlinearities, noise, or other effects), or
to simulate more elaborate systems (such as a double
inverted pendulum, for example). The minimal cost
and the safety associated with the experiments make
them particularly attractive for teaching and for other
demonstrations.
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