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Fast Implementation of Direct Allocation
with Extension to Coplanar Controls

John A. M. Petersen* and Marc Bodson'
University of Utah, Salt Lake City, Utah 84112

The direct allocation method is considered for the control allocation problem. The original method assumed
that every three columns of the controls effectiveness matrix were linearly independent. Here, the condition is
relaxed, so that systems with coplanar controls can be considered. For fast online execution, an approach using
spherical coordinates is also presented, and results of the implementation demonstrate improved performance
over a sequential search. Linearized state-space models of a C-17 aircraft and of a tailless aircraft are used in the

evaluation.

I. Introduction

O increasethe reliability of aircraft, configurations with a large

number of actuatorsand controlsurfacesare advantageous.Re-
configurable control laws may be used to exploitall of the available
control power despite failures and damages."> Control allocationis
the problem of distributing the control requirements among multi-
ple actuators to satisty the desired objectives while accounting for
the limited range of the actuators. Although solutions exist for the
control allocation problem, an issue of currentinterestis that of the
feasibility of theirimplementationon existing computers for aircraft
with a large number of actuators?

The direct allocation approach*~® is based on the concept of the
attainable moment set (AMS), which is the set of all of the mo-
ment vectors that are achievable within the control constraints. The
method of directallocation allows one to achieve 100% of the AMS,
whereas some other approaches such as daisy chaining, pseudoin-
verse, and generalizedinverse solutionshave been shown to achieve
a smaller volume.’

In the direct allocation method, the moment vectors are as-
sumed to be related to the controls through the linear transformation
m = CBu, where m is the resultant moment, u is the set of con-
trols, and CB is referred to as the controls effectivenessmatrix. The
original method for three moments developed by Durham*~® was
restricted to systems in which any three columns of CB are linearly
independent. For this case, the boundary of the AMS consists of
parallelograms defined by pairs of controls varying between their
limits. As it turns out, the control needed to produce any moment on
the boundary of the AMS is unique. In the direct allocation method,
moments lying inside the boundary of the AMS are obtained by
scaling the controls required to produce a moment of maximum
magnitude in the same direction. In a similar manner, moments ly-
ing outside the boundary are scaled down to the achievable values.
Therefore, controls are always uniquely defined.

If the restriction on CB is not satisfied, then the boundary of the
AMS is defined by polygons rather than parallelograms, and each
facet is bounded by 2p sides, where p is the number of controls
defining the polygonalfacet. With more than two variables describ-
ing the facet, the solutionis not always unique, even on the boundary
of the AMS. Because this situation occurs when the effects of three
ormore controlsare linearly dependentin a three-dimensionalspace,
the terminology coplanar controlsis introduced to refer explicitly to
this case. Systems with coplanarcontrolsare loosely called coplanar
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systems. The geometry of the AMS boundary is further described
in the paper, and a possible choice for the selection of the control is
proposed given the nonuniqueness properties.

Next, we consider that most of the computational burdenin using
the direct allocation method lies in finding the facet on the AMS
boundary in the direction of the desired moment. Generally, com-
putations may be split into offline and online computations. Offline
computations are defined to be those that may be performed at the
design stage or, in the case of a reconfigurable control law, at a
slower rate than the normal sampling rate. Online computations are
those that are required for the determination of the control input
atevery sampling instant. A significant portion of the computations
may be performed offline in the direct allocationmethod and consist
of the determination of the set of attainable moments. Online com-
putations include the search for the facet in the attainable moment
set that is aligned with the desired moment and the determination
of the control input using appropriate scaling.

To reduce the online computations, a representation of the AMS
in two-dimensional space, using spherical coordinates, is shown to
be beneficial. The new method converts the AMS representation
into a two-dimensional system, where special techniques can be
used to accelerate the search. Two options are suggested for the
implementation. The first method computes facet boundaries that
are used online to eliminaterapidly a large number of facets from the
search. The second method creates a two-dimensional array relating
the spherical coordinates of the desired moment to a corresponding
facetidentifier. The appropriatefacetis found online by table lookup,
requiring no iterations and virtually no computations. The spherical
methods are also developedfor coplanar systems. Rather than using
polygonalfacets for therapid search, a representationusing multiple
coplanar subfacets is considered. Examples used to illustrate the
concepts proposed include a C-17 aircraft model with 16 actuators
and an advanced tailless fighter model with 11 actuators.

II. Problem Statement
Consider the linearized aircraft model

x = Ax + Bu, (D

wherex € R, u € R",andy € R>. The states of the aircraftare given
by x and include the angle of attack, the pitch rate, the angle of
sideslip, the roll rate, and the yaw rate. The outputy contains the
pitch rate, the roll rate, and the yaw rate. The control input u is
constrained to limits

y=Cx

Ui, min <u; < U, max for i

The matrix B specifies the forces and moments generated by the
actuators. These forces and moments are limited by the allowable

range of control inputs. Because we are interested in controlling the
outputy, we consider the derivative of y, which is given by

y = CAx + CBu )

Model reference control laws® and dynamic inversion control laws’
allow one to specify the trajectories of the output of the system by
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selecting the value of the term CBu due to the control input. The
directallocation problem can be formally stated as follows: Given a
desired vectormy, find the vectoru such that CBu is closestto m, in
magnitude, with u satistying the constraints and CBu proportional
tom,.

In the original formulation of Durham,*~¢ the vector m, was a
desired moment. Here, the vector represents three desired rotational
accelerations. We will nevertheless continue to refer to the set of
achievable CBu as the AMS.

III. Attainable Moments and Direct Allocation

Initially, we make the following assumption (noncoplanar con-
trols): Every 3 x 3 submatrix of CB is full rank. Under this assump-
tion, the following properties are obtained.

A. Systems with Noncoplanar Controls
1. Properties of the AMS

The AMS is a convex polyhedron whose boundary is the image
of the facets of the control space. A facet of the control space is
defined as the set obtained by taking all but two controls at their
limits and varying the two free controls within the limits. A two-
dimensional facet in control space is rectangular. The projection
of such a facet to moment space is a linear transformation result-
ing in a two-dimensional parallelogramin three-dimensionalspace.
When every set of three columns of the CB matrix are linearly
independent, every facet on the boundary of the AMS originates
from a unique facet on the boundary of the control space. There are
2" =2p!1/[2!(n — 2)!] facets in the control space. However, most of
these facets map to the interior of the AMS, and the boundary of
the AMS comprises only n(n — 1) facets.® The four corners of each
facet of the AMS are called vertices, and the four sides are called
edges. There are n(n — 1) + 2 vertices in the AMS.

2. Computation of the AMS

The boundary of the AMS is made of facets corresponding to
all of the possible pairs of input variables. For each pair, there is a
multitudeof facetsin the original control space, but only two of them
map to the boundary of the AMS. They may be found by looking for
the combination of the other controls that maximizes the distance
between the two facets. Hereafter, we refer to one of the facets as a
max facet and the other as a min facet. The collection of all of these
pairs of facets then constitutes the boundary of the AMS.

To further explain the procedure, let CB be subdivided as

CB = [cb,,ch,, ..., ch,]

Yaw Accel.

'
[
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15 4

Pitch accel.

where ¢b; is a column vector and m; = ¢b;u; is the moment vector
correspondingto the single controlu; . For a pair of controls (u;, u ;)
iefl,...,n—=1},jeli+1,...,n},let the normal to the plane of
the facetn,; be defined by taking the cross productof the two vectors
defining the facet

n;; = cb; X cb; (3)

Then, the two farthest facets are determined through the two vectors

Mpax = Z Fric max (4)
k=1.k#i,j
where
_ Cbkuk.max if (Cbk)Tnij >0
Himax = Cbkuk.min if (Cbk)Tnij <0
Muyin = Z Hi min (5)
k=1.k#i,j
where
Cbkuk.max if (Cbk)Tnij <0
Pemin =N cpowg o if (cbi)"m;; > 0

Note that the case where the vector product (cby)"m;; is zero is
impossible for noncoplanar systems by virtue of the assumption
of linear independence of every three columns of the CB matrix.
However, this caseis possible with coplanarsystems andis discussed
in detail in Sec. III.B. In coding this procedure, it is convenient to
store an array of flags indicating the control values (max, min, or
free) associated with each facet. A facet may also be assigned a
number to index the array.

The vertices of the two facets are determined by using the max-
imum and minimum values of the other two free controls. For
instance, the vertices for the max facet are

Vi = My + Cbiui.min + ijuj.min
Vo = My + Cbiui.min + ijuj.max
V3 = My, + Cbiui.max + ijuj.min
V4 = Mpax + Cbiui.max + ijuj.max (6)

Figure 1 shows the results of this procedure for a C-17 aircraft
model. A three-dimensional view of the boundary is shown. The

Roll accel.

Fig.1 Set of attainable moments for a C-17 model.
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facets are shaded according to height in the yaw acceleration axis.
The C-17 model includes 16 separately controlled surfaces: four
elevators, two ailerons, two rudders, and eight spoilers. The set is
delimited by 240 facets.

3. Computation of the Control Input

The control input is obtained by scaling the desired moment so
that the scaled vector reaches the boundary of the AMS. On the
boundary, there is a unique relationship between the moment and
the value of the input needed to achieve it. If the desired moment
is larger than the one attainable in the given direction, the moment
vector is scaled to the achievable value. If the desired moment is
smaller, the control input associated with the maximum attainable
moment is scaled to obtain the desired moment.

The algorithm proceeds as follows. For a given facet, a basis
spanning the moment space is formed by using the vector from the
origin to one vertex of the facet and the vectors from this vertex
to the two adjacent vertices. Let my,. be the vector to one of the
vertices and Am; and Am; be the vectors from this vertex to the
other two vertices.

Using m, as the desired moment, we have

Mpye = V1, Am; =v; —v| = cb; Au,

Am; =v, —v, =cb;Au;
p3my = piAm; + p, Am; + my,g 7

where Au; = (U; max — Ui min)- The free parameters p;, p,,and p; are
found by solving the 3 x 3 set of linear equations

A
A | = [Am; Amj mbabe]ilmd (8a)
A3

and by letting p; =A{/A3, p»=A2/A3, and p3 =1/A;. Figure 2
shows graphically the moment vector equation. The value psm,
is the point at which the vector m, intersects the facet. The values
of (o, s, p3) determine whether m, intersects the facet. If

O0<p <1
0<p<1 (8b)
o3>0

then a vector in the direction of the desired moment intersects the
facet defined by My, Am;, and Am;.
The control vector at the boundary is

Uboundary = Ubase + p1Au; + pZAuj ©)

where uy,., Au;, and Au; are the sets of controls that determine
My, Am;, and Am;, respectively. Here, upoungary 1 the control
associated to the maximum moment in the direction of the desired
moment and within the control constraints. If p; < 1, the desired
moment exceeds the maximum available moment and #poyngary 18
taken to be the control. If p; > 1, the control is scaled to match the
moment requirement, with & = tpoungary /03

Fig.2 Desired momentinter-
secting a facet, with basis vec-
tors shown in relation to the
facet.

4. Sequential Search for Direct Allocation

The computation of the control input involves the solution of a
linear system of three equations in three unknowns and the linear
combination of three input vectors. If the correct facet is used, the
computations are minor, and the resulting control input satisfies the
limits. If the incorrect facet is used, the values of (o, p,, p3) exceed
their limits, and the control input will not satisfy the constraints.
The computation may be used as a test of whether the facet is the
correctone. If all of the facets are tested sequentiallyin this manner,
the procedure may be used for control allocation. We will refer to
this approach as the sequential search procedure.

The computationsfor this procedure may be separatedinto offline
and online computations. The offline code creates a table containing
the four vertices associated to each facet. The online code consists
of retrievingthe vertex data, computing the control, and checkingits
feasibility. Once the correctfacetis encountered,computationsstop.
The search will be time consuming if the number of facets is large.
The sequential search was nevertheless implemented to provide a
baseline for the evaluation of the benefits of the methods proposed.
More intelligentsearch techniqueshave been proposed,’!? but these
were not implemented for this paper. Instead, the use of spherical
coordinates is investigated to accelerate the search.

B. Systems with Coplanar Controls
1. Properties of the AMS

For systems with coplanar controls, a p-dimensional volume
(p =2) in control space maps into a two-dimensional facet in mo-
ment space and has 2 p sides. The facet becomes a polygon defined
by p controls. Figure 3 shows the AMS for an advanced tailless
fighter model.!! According to Ref. 11, the output vectory is com-
posed of modified rotationalrates. Specifically, the components of y
are the pitch rate, the stability axis roll rate, and a blend of sideslip
and stability axis yaw rate.

The advanced tailless fighter model includes 11 separately con-
trolled surfaces consisting of elevons, pitch flaps, thrust vectoring,
outboard leading-edge flaps, spoiler slot deflectors, and all-moving
tips. In this model, pitch thrust vectoring and the pitch flaps pro-
duce linearly dependent moments yielding coplanar controls with
any third control variable. It was found that up to four control vari-
ables were coplanar (2 < p <4). Some polygonal facets are indeed
clearly visible in Fig. 3. The boundary of the AMS is delimited by
78 such facets.

Polygonalfacetscanalsobedescribedby asetof subfacetsthatare
the projections of the two-dimensional facets of the control space.
Each two-dimensional facet is determined by two controls as in the
noncoplanar case. For every pair of the p controls, there are 27 =2
identical subfacets offset from each otherin the same plane. Because
there are p(p — 1)/2 pairs of controls, the total number of subfacets
covering a polygonal facet is given by

ny,y=pp—172r-3 (10)

Figure 4 is a series of figures that details the relationship between a
polygonal facet and its subfacets. The top diagram in Fig. 4 shows
a polygonal facet. The middle diagram in Fig. 4 shows how the six
subfacets cover the polygonal facet. The bottom diagram in Fig. 4
shows the three sets of subfacetsin an exploded view. The represen-
tation of the AMS by subfacets has been found to be practical for
the computation of the control input in the extension of the direct
allocation method proposed here.

2. Computation of the AMS

The algorithm is similar to the one describedin Sec. III.A.2. For
everypairofcontrols(u;, u;),i€{l,...,n—1},je{i+1,...,n},
each column of CB, excludingcolumnsi and j, is evaluated. Copla-
nar controls can be determined by the product (cb;)"n, j» Where
k+#i, j. If this product is zero, then the kth control is coplanar
with the facet created by the control pair (u;, u;). The noncopla-
nar controls (that correspond to the columns of CB that are linearly
independent of columns i and j) are then selected to maximize
the distance of the facet from the origin. As before, for each facet,
there is an identical facet that lies on the opposite side of the AMS
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Fig.3 Set of attainable moments for an advanced tailless fighter model.
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boundary and can be found using the opposite values for each of the
n-p noncoplanar controls. When the set of indices

Throe pairs
of controls
times two
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sub-facets

K ={i, j, and indices of all controls coplanar with u; and u }

is defined, the maximum displacement vector is

My = Z Fg max (n
k=1

ke K

where ;... is defined in Eq. (4). The opposite facet is determined
by the minimum displacement vector

Myin = Z Hk min (12)
k=1

ke K

where p; ... is defined in Eq. (5).

Whereas the noncoplanarn- p controls determine the distance of
a polygonal facet from the origin, the remaining p controls deter-
mine the shape of the polygonal facet. Each polygonal facetis made
up of p(p —1)/2 sets of r =27 ~2 subfacets. Each subfacet lies in
the same plane, but has a different offset that shifts it with respect
to the other subfacets. The offset is determined by the sum of the r
combinations of max and min control values of the coplanar con-
trols. For every unordered pair of controls {(u,, u,)|la € K,b e K,
a # b}, the offset of each subfacet is computed using the controls
{u.lc € K, c ¢{a, b}} in different combinations of their upper and
lower limits, resulting in

offset, = cb.u, (13)

where g € {1, ..., r}. Because c is a vector of p — 2 indices, ¢b. in
Eq. (13) is a matrix with p — 2 columns.

Finally, subfacets are defined by vertices obtained by summing
the displacement vector, the offset, and the four combinations of
maximum and minimum values of the two free controls u, and u,,.
For instance, the four vertices for the gth max subfacet are

Vig = Mmax + bty min + cbyty min + offsety
Vag = Mmax + €baly min + €bptty max + offsety
V34 = Mmax + Cbaly max + €yl min + offset,

Vigq = My + bty max + byl o + offset, (14)

3. Computation of the Control Input

With all but two of the controls at their limits for a given sub-
facet, the control that will achieve a moment vector intersecting the
subfacet can be defined as before. However, because overlapping
subfacets may exist at a particular boundary point, there is not, in
general, a unique relationship between the moment and the value of
the input needed to achieve it. Whereas the solution corresponding
to any subfacet could be taken as a solution to the direct allocation
problem, we propose to take instead the average of the inputs result-
ing from all overlapping subfacets. Taking the average is a simple
solution that gives the desired moment, usually reduces the number
of saturated controls, and guarantees the continuity of the solution.
Figure 5 helps one visualize the advantage of averaging the con-
trols. Figure 5 shows two subfacets in control space that overlap in
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moment space. Any point along the dashed line will result in the
desired moment, but the midpoint will offer a control vector that
yields an attractive compromise between control limits.

4. Sequential Search for Direct Allocation

The sequential search procedure described in Sec. III.A.4 may
be employed for the search for the right subfacet. Although all sub-
facets containing the desired moment must be found, once a correct
subfacetis encountered,one only needs to check the other subfacets
lying in the same plane (i.e., those with the same parent polygonal
facet) to complete the search. The sequential search procedure is
useful as a baseline for evaluation.

IV. Rapid Search Using Spherical Coordinates

A. Systems with Noncoplanar Controls
1. Representation of the AMS in Spherical Coordinates

Because the determination of the applicable facet does not de-
pend on the magnitude of the desired moment, the search may be
performed in a two-dimensional space instead of the original three-
dimensional space. Each vertex of the moment space, determined
by (x, y, z) coordinates, can be expressed in spherical coordinates
0, sp, p), with

0 =tan"'(y, x) (15)

s = sin(p) =z/p (16)

p=va2+y 422 a7

where 0 represents the azimuth angle (the horizontal angle in the

x, y plane), ¢ representsthe elevationangle (the vertical angle from
the x, y plane), and p represents the distance from the origin. This

Sub-facet #1

third spherical coordinate is irrelevant for the search of the facet.
For the azimuth, note that a two-argument inverse tangent function
is used. The value sin(¢) (henceforth abbreviated s¢) is also used
instead of ¢ to simplify online computations.

Figure 6 shows the resultof transformingthe boundaryofthe C-17
AMS to spherical coordinates, with 0 shown on the x-axis in the
range of £. The sine of the elevation angle is shown on the y-axis.
Figure 6 shows thatthe lines that form the edges of the facets become
curves, because of the nonlinearchange of coordinates.In fact, these
curves are the well-known great circles used in navigation. They are
the projectionon the unit sphere of three-dimensionalline segments,
or the intersectionof the unit sphere with a planeincludingthe origin
and the two vertices. The idea of using the spherical coordinates
is that the desired moment is represented in the two-dimensional
space as a point, and that the control allocation problem becomes
the simpler problem of determining to which two-dimensional facet
the point belongs.

Some terminologyis introducedto help conveythealgorithms. An
edgejoinstwo adjacentverticesof afacet. A crossingis defined as an
edge between two vertices, with azimuth angles 0, and 6, crossing
the =7 boundary. Existence of a crossing may be determined by
testing

80 = Omax — Omin (18)

with 0i.x = max(6;, 6,) and O, = min(6,, 6,). If 60 > 7, one may
conclude that the edge crosses the boundary. A split facet is one in
which the facet s bisected by the line = %.

The great circle for each pair of vertices looks like a distorted
sinusoid in the spherical coordinate space. The curve reaches max-
imum and minimum values of the elevation angle ¢ that have
equal magnitude and opposite sign. These points occur 180 deg
apart in azimuth angle. For the mapping of two vertices in
three-dimensional to two vertices in spherical coordinate space
(e, v, 21), (%2, Y2, 220} = {61, 591), (62, 592)}, it turns out that
one of the extrema of the great circle occurs at (Gpk, S@p) given by

Op = tan~ ' (x125 — X221, Y221 — ¥122) (19)

Spk = S¢1/\/S§012 + (1 - S%z)[COS(@pk -0 (20)

To obtain the correct values, 6, needs to be adjusted by £ using

—

iy
Average o
Control
Sub-facet #2
Fig. 5 Visualization of averaging the controls. the following rule:
1
05
Z

sin({Elevation angle)
(=]

=3
L4y
T

Y e e

3 -2 -

]
Azimuth angle, radians

1 2 3

Fig.6 Spherical mapping of C-17 AMS facets.
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if cos(@pk —01) < 0 then Oy = 6Oy — sign(@p)m  (21)
The other extremum of the great circle is obtained by symmetry.

With the knowledge of the peaks of the great circle, the equa-
tions defining the great circle, that is, the edge of the facet under
consideration, is given by

cos(pp) = 1 — sgly, o = $@p cOS(Bpx — 6r)

SQp = a/\/ cos(ppk) + a2 (22)

where (0;, sg;) is a point on the great circle.

2. Rapid Search Using Facet Boxes

In the first option, ranges are computed for the coordinates of
the facets, and they define boxes in which the facets are located.
The boxes are used to assess quickly whether the desired moment
is likely to lie within a given facet. The overall approach is similar
to the exhaustive search, but simple inequality tests are used to drop
facets from the list. For those facets that are left, the usual test of
Eq. (8b) is performed. If the test is successful, the control input is
quickly obtained. Otherwise, the search continues. The idea is that
the test is required for very few facets.

a. Offline computations. Offline computationsconsist of the de-
termination of the AMS and of the boxes that delimit the facets
in spherical coordinates. For illustration, a facet box is outlined
with a dashed line in Fig. 7. It shows that the box is determined
not only by the coordinates of the vertices, but also by maxima
reached within the edges of a facet. The peaks of the great circles
are, therefore, determined using Eqs. (19-21), and their values are
used in the computations of the box if the peaks lie between the
vertices.

A difficulty with the implementation of the method is that facets
may span the boundariesof the two-dimensionalspace. In particular,
two facets include the north pole and the south pole. The north and
south poles are the points with ¢ =90 and —90 deg, respectively.
Facets may also span the azimuth boundaries. Such facets could be
split into two facets to perform box tests. Instead, however, facet
types are defined, and those facets that span the azimuth boundary
are redefined on the (0, 277) range so that they become contiguous.
The procedure is then implemented in the following steps:

1) Compute AMS vertex coordinates and facets. The AMS is
computed using the direct method as described earlier.

2) Compute spherical coordinates of all vertices.

3) Determine the facet type. Five types of facets are considered
and are designated as types 0-4. The azimuth range is extended so
that each facet is completely contained in at least one of the two
rangesof 0: —m <0 <mw and0 <0 < 2m. A facetis assigned a label
of type 0 (those facets in the first set) or type 2 (those facets in the

0.7 r

sin{elevation angle)
o
[+:3

et
w
T

02
-3 -2.6 -2.2 1.8 -

Azimuth angle, radians

Fig.7 Spherical mapping of a single facet outlined by a facet box.

second set, that is, split facets). Furthermore, three special cases are
assigned: 1) facets thatenclosea pole (type 1), 2) facets that bordera
pole and lie within —7 < 6 < 7 (type 3), and 3) facets that border a
pole and lie within the range 0 < 6 < 27 (type 4). Facet type can be
determined by testing the §6 of each facet edge. The value of 66 is
categorizedin four possibleranges describingfourcases: 1) 60 < m,
2) 80 > m, 3) 86 =m, and 4) 56 =0. A simple algorithm can be
applied to determine the facet type based on the type and number
of crossings, with

facettype = ¢ + 3d (23)

where c € {0, 1, 2} is the number of crossings and d € {0, 1} is the
number of occurrences of case 3.

4) Determine box boundaries of spherical facets.

a) Compute the maximum and minimum spherical coordinates
of the edges between vertices of each facet. If the facet is type 2 or
type 4 (i.e., in the 0 < < 27 range), negative values of 6, 6, and
Oy of each edge are incremented by 27 before calculating s@py.

b) Store the extremal values of 6 and sin(¢) for each facet to
define the facet box. For each facet, determine 0, Omax » § Prmin» and
SPmax - Store these values in a facet box table. If the facet includes
a north (south) pole, S@max (S@min) is forced to its maximum (mini-
mum) of 1 (—1). Distinguishing a north pole from a south pole can
be done by calculating the great circle formed by any two of the
facet vertices that form an edge and testing the location of a third
facet vertex (03, sg3) relative to this great circle. If s, is computed
from Eq. (22) with 6, =65, and if s@; > 5@y, the facet is a north
pole. Otherwise, it is a south pole.

5) Compute and store the 3 x 3 inverse of Eq. (8a) for each facet.

b. Online computations. Online computations are described in
the following steps:

1) Convert the desired moment into spherical coordinates.

2) For each facet, check the feasibility of the desired moment.
Compare the coordinate of the desired moment to the facet box.
If the facet box is type 2 or type 4, add 27 to the azimuth of the
point.If the desiredmoment lies within the box boundaries,compute
(o1, P2, p3) as shown in Sec. III.A.3. The rest of the controls are
given by the control flags associated with the facet number.

3) Compute the control input. Once the correct facet is found and
the test in Eq. (8b) is performed, one only needs to scale the control
as necessary to satisfy the constraints.

3. Rapid Search Using Table Lookup

The secondoptionconsistsin creatingalookuptable f (9, s¢) that
gives the number of the facet associated with a given pair of spher-
ical coordinates. If the azimuth and elevation angles are quantized
with 1000 points each, this option requires an array with 1,000,000
values, a size that is large but within the reach of existing comput-
ers. The creation of the table is essentially the transcriptionof Fig. 6
into an array, and the marking of the elements of the array with the
associated facet number.

The online computationscould not be simpler with this approach:
the facet toward which the desired moment pointsis found instantly
by table lookup, and the appropriate control is determined with
minor computations. Note that control allocation is guaranteed to
be performed within a known and short period of time.

a. Offline computations: construction of the facet table.  The
steps to this method are as follows:

1) Compute AMS vertex coordinates and facets. The AMS is
computedusing the direct method as before. From this computation,
one obtains coordinate information as well as knowledge of which
vertices connect along an edge of the facet and the set of controls
that form each facet.

2) Compute spherical coordinates of the vertices. For a vertex
at (x, y, z), the spherical coordinates (6, s¢, p) are obtained using
Eqgs. (15-17).

3) Compute and quantize the facet edges. Quantizing the edges
is done by converting the end points to a range of index values
in 6, computing corresponding values of s¢, and then convert-
ing these values to an appropriate index. Continuous edges in the
range —7 < 6 < m are straightforward.Edges that cross the § = &7
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boundary have s¢ indices that are not contiguous and must be man-
aged properly. The indices of each edge of the facet are stored in a
common array.

4) Modify pole facets. Facets containing a pole must be treated
as special cases. A facet with one crossing, that is, one edge with
80 = 7 (correspondingto an edge that passes through a pole), con-
tains a pole. Because the line s¢ is actually a single point in three
dimensions, the edge s¢ = £1 (1 for north pole, —1 for south pole)
for each 6 index must be added to the common array of step 3.

5) Create a facet table. The facet table is a two-dimensional array
of the facet numbers or identifiers. The indices represent quantized
values of 6 and s¢. When the common array is complete, the facet
table is updated in the storage locations to which the facet indices
just calculated correspond, includingindices inside the boundary of
the facet.

6) Compute and store the 3 x 3 inverse of Eq. (8a) for each facet.

b. Online computations. The online computationsare described
in the following steps:

1) Convert the desired moment into spherical coordinates and
then to facet table indices.

2) Obtain the facet number from the lookup table.

3) Compute the control input. Compute (p;, p2, p3) as shown in
Sec. III.A.3 to arrive at the values for the free controls. The rest of
the controls are given by the control flags associated with the facet
number. Scale the control as necessary to satisfy the constraints.

4. C-17 Example

Each algorithm was tested with 1000 randomly selected desired
moments for the C-17 example. The AMS has 240 facets and 242
vertices in moment space. The sequential search method was used
to establish a baseline to evaluate the other search methods. The
spherical facet table technique was simulated using quantizations
of 100 and 1000 for each axis.

Figures 8 and 9 display comparisons of the number of float-
ing point operations (obtained by using the flops command in
MATLAB®) of the three algorithms. These histograms are intended
only to provide a rough comparison of the algorithms described in
this paper and should be used with caution because the results are
dependent on the specific implementation as well as on the lan-
guage and hardware used. Note, in particular,that MATLAB counts
as floating pointing operations some operations that would normally
be counted as integer operations. The code for each algorithm was
written in MATLAB version 5.3.

The histogram in Fig. 9 shows a range and an average value for
the online code of the sequential search and facet box methods. The
range denotes the minimum to maximum possible values for the
method, whereas the average was computed for the 1000 randomly
sampled moments. Our simulations have shown that a sample size
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of 1000 or more is typically large enough for the average num-
bers to be representative. One finds that the facet table approach
considerably reduces the number of required computations to be
performed online, and eliminates the variability in the number of
those computations, making it ideal for real-time applications that
demand reliable and predictable results. Memory requirements are
significant, however. For memory rich systems requiring extremely
fast operation,such as found in computer simulations, this approach
is an attractive option. In an adaptive control application, the offline
computations may also constitute an important burden to be con-
sidered. The facetbox approachis a simple and useful intermediate
option. The facet boxes may also be arranged using a hierarchical
tree structure as is commonly done in range search techniques.'?
This may be advantageous for systems with a very large number
of controls, but for systems with n <20, the reduction in online
processing is minimal and not considered advantageous enough to
warrant its implementation.

Further analysis indicates some interesting characteristics of the
facet box algorithm. Figure 10 gives a histogram of the number of
box tests performed before the correctfacetis found. The theoretical
maximum is 240 in this example, but one finds that rarely more than
150 tests are required. The average number of tests was computed
to be 49.7.

With the box test, the number of box tests passed is considerably
less than the number of facets tested. Figure 11 shows thatin nearly
50% of the cases, only one facet passed the box test. In 95% of the
cases, a maximum of three facets passed box tests, and in none of the
cases did more than five pass the test. The average number, for which
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Fig. 12 Spherical mapping of overlapping facets outlined by facet
boxes.

Eq. (8) must be computed, was found to be 2.0, to be compared with
49.7 required without the box test. Although the sequentialsearchis
viable, box tests in spherical coordinates make this approach much
faster. The number of computationsrequired, however, is not fixed.

B. Systems with Coplanar Controls
1. Representation of the AMS in Spherical Coordinates

Figure 12 shows the result of transforming the boundary of the
advanced tailless fighter AMS to spherical coordinates. The trans-
formed polygonal facets are visible. Although not shown, parallel-
ogram subfacets are used to cover the area of every polygonalfacet.
Because the polygonal facets can be completely specified by sub-
facets, the same options as discussedin Secs. IV.A.2 andIV.A.3 can
be used. However, modifications to the specific options are made
here to extend its use to solve the problem of overlapping subfacets.

2. Rapid Search Using Facet Boxes

a. Offline computations. ~ As in the original method, ranges are
computed for the coordinates of the subfacets. Subfacets are treated
no differently from noncoplanar facets. However, a methodology
for tracking overlapping subfacets improves the online search. An
array identifies a parent polygonal facet for each subfacet. Once
a subfacet is found, only the other subfacets associated with the
same parentare tested. For our example of the tailless fighter, which
has 78 polygonal facets and 210 subfacets, the array has 210 rows
and 78 identifiers. Figure 13 shows an illustration of overlapping
subfacets outlined with facet boxes.

0.7

sin(Elevation angle)
o <) o ©
w £ [4,) [o2]

I
S
T

o
S
T

1 t
o-2 -1.5 -1 -0.5 o 0.5 1 1.5

Azimuth angle, radians

Fig. 13 Spherical mapping of overlapping subfacets outlined by facet
boxes.

b. Online computations. The online computationsare shown in
the following steps:

1) Convert the desired moment into spherical coordinates.

2) For each subfacet, check the feasibility of the desired moment.
Compare the coordinateof the desired moment to the facetbox. If the
desired moment lies within the box boundaries,compute the control
for this subfacet. If the conditionson (p;, p,, p3) are satisfied, check
all other subfacets associated with the same parent facet. If not, go
to the next subfacet.

3) Compute the controlinput. Once the correctsubfacetsare found
and the tests of Eq. (8b) are performed, the applicable controls are
averaged and scaled if the desired moment exceeds the achievable
value.

3. Rapid Search Using Table Lookup

The creation of a spherical coordinate table for a system with
coplanar controls can be done by including a third dimension. The
added dimensionis a vector of n, ¢ values correspondingto the sub-
facets that overlap at thatlocation. Low quantizationresolutionmay
increase the apparent number of overlapping subfacets.

a. Offline computations: construction of the facet table.  The
facet table is a two-dimensional array of subfacet numbers or iden-
tifiers. Subfacet indices are recorded along a third dimension, if
overlapping occurs. Again, the details of this method are identi-
cal to those explained in Sec. IV.A.3 with the modification of the
vectorized facet identifiers in the table.

b. Online computations. The online computations consist of
the following steps:

1) Convert the desired moment into spherical coordinates and
then to indices of the facet table.

2) Obtain the array of facet numbers from the lookup table.

3) Compute the control input. Compute Eq. (8) for each subfacet
in the array to arrive at the values for the free controls. Average the
resulting controls of each subfacet. Scale the averaged control as
necessary.

Again, the online computations are quite simple with the facet
table approach: The subfacets toward which the desired moment
points are found instantly by table lookup, and the appropriate con-
trol is determined with minor computations. Note that online com-
putationscould be even furtherreduced by converting the facet table
into a control table. This would be done by computing the control
for each facet table location in the offline code. The online code
then becomes exclusively a lookup table to obtain the control. This
method is ideal for applications where low resolution is acceptable
or where simple and reliable online code is of premium importance.

4. Tailless Fighter Example
Each algorithm was tested with 1000 randomly selected desired
moments and with the tailless fighter model. The AMS has 210
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subfacets in moment space. The sequential search method was used
to establish a baseline to evaluate the other search methods. The
sphericalfacettable techniquewas implementedusing quantizations
of 100 and 1000 for each axis. Figure 14 displays a comparison of
floating point operations for the offline computations. The number
of computations for the 1000 x 1000 facet table was of the order of
107 flops and was not plotted with the others in the histograms.

Figure 15 shows the online computations. The histogram entries
for the sequential search and facet box methods have a range and an
average value. The range denotes the minimum to maximum pos-
sible values for the method, whereas the average was computed for
the 1000 randomly sampled moments. As in the case for systems
with noncoplanar controls, both spherical approaches considerably
reduce the number of computations to be performed online and
significantly reduce the variability in the number of those computa-
tions. The facet box approach is nearly equivalentto the facet table
method in terms of online calculations and significantly cheaperin
terms of offline computations.

The variation in online computations for the facet table method
of different quantizationsis due to variations in the number of ap-
parent overlapping subfacets. Although two subfacets might not
overlap, if the quantization is low enough, they effectively may.
This results in more subfacets to be checked and averaged. There-
fore, a higher quantization will typically yield slightly lower online
computations.

Although the maximum number of box tests is 210, the average
number is only 52. Figure 16 is a histogram of the number of box
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tests performed before the correct facet is found. Figure 17 shows
a histogram of the number of box tests performed before a final
control value is determined. In 92% of the cases, a maximum of 8
facets passed the test, and in none of the cases did more than 15 pass.
The average number of tests of Eq. (8b) was computed to be 5.6,
to be compared with 52 required without the box test. The number
of computationsrequired, however, is not fixed due to variability in
the number of overlapping facets.

V. Conclusions

Direct allocation provides a solution to the control allocation
problem that not only retains the direction of the desired moment,
but takes advantage of the maximum attainable moment set. Direct
allocation was previously only applicable to systems whose con-
trols effectiveness matrix was such that every three columns were
linearly independent. A system that is not limited in this way has
been called a system with coplanar controls, or simply a coplanar
system. The example of a tailless fighter aircraft model was shown
to fall into this category.

The geometry of the attainable moment set for a coplanar system
was explained, and an extension to the direct allocation method
was given in this paper. The average of the multiple solutions was
computedin the procedure,and the conceptof overlappingsubfacets
was found useful for that purpose. Although the method of direct
allocation is stressed, the shape of the AMS and nonuniqueness of
the controls apply to any control allocation method.
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The representation of the AMS in spherical coordinates makes
it possible to perform rapidly the online computations required by
the directallocation method. No prior information is required about
the approximate location of the correct facet. Two options were
discussed, which have their respective advantages. The first option
(facet box method) did not require large memory storage, but had a
larger and variable number of online computations. The number of
computationsfor a given control cycle will not exceedn(n — 1) box
check comparisons (trivial) and a few three-dimensional vector-
matrix multiplications. The number of these matrix operations is
uncertain, but was found to not exceed five in our tests involving an
aircraft model with 16 actuators.

The second option (facet table lookup method) required virtually
no onlinecomputationsand provideda guaranteedsolutionin a fixed
time. The drawback was a potentially large memory requirement
and longer offline execution time. Overall, both options provide a
considerableimprovement over a sequential search of the facets.

Slight modifications to the spherical coordinate methods were
shown to provide direct allocation solutions to coplanar systems.
The properties of those methods were similar to those for noncopla-
nar systems. Overlapping subfacets were identified by adding a third
dimension to the table that stores the identifier of each subfacet.

The advantage of the method over ganging and other simple con-
trol allocation techniques is that it guarantees the use of the max-
imum control authority available, while at the same time requir-
ing very few online computations. Compared to other rapid search
techniques for direct allocation, its advantage is a high degree of
predictability and reliability. It is also ideal for lengthy simulations
because of the extremely fast execution time. However, the method
requires a significant amount of memory and is not well suited to
reconfigurable control, which would require continuous update of
the lookup table in real time.
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