
ECE 5670/6670 – Lab 8 

 

Torque Curves of Induction Motors 

 

Objectives 
 

The objective of the lab is to measure the torque curves of induction 

motors. Acceleration experiments are used to reconstruct 

approximately the torque curves, assuming that the load torque is 

constant and that a steady-state approximation is valid. The 

dependency of the torque on the electrical frequency is also 

investigated.  

 
1.  Introduction 

The dynamic response of an induction motor is considerably more complex than the 

response of a brush DC motor or a permanent-magnet synchronous motor. A simple model 

includes at least five nonlinear differential equations. However, the torque curves obtained 

under steady-state assumptions provide sufficient information for the design of slip control 

drives.  

Consider a two-phase induction motor with sinusoidal phase voltages 
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where VS is the peak voltage and ωe is the electrical frequency. Assume that the electrical 

machine is in sinusoidal steady-state and that the speed is constant. Then, the torque is 

equal to 
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Although equation (2) is only valid under the steady-state assumptions, it is useful in other 

cases as well, provided that the electrical and mechanical frequencies vary slowly. 

Fig. 1 shows a set of torque curves for a typical induction motor. The torque is plotted 

as a function of the speed ω, expressed in rpm, for a given electrical frequency (the three 

curves correspond to electrical frequencies of 20 Hz, 40 Hz, and 60 Hz respectively). For 

the motor under consideration, the number of pole pairs is np = 1, and a frequency of 60 Hz 



corresponds to a synchronous speed 
� = ��
 equal to 3,600 rpm. Note that the torque 

goes to zero when the speed reaches the synchronous speed. 

 

Figure 1: Torque Curves of an Induction Motor 

Close to the synchronous speed, the torque is approximately linear in the difference 

between ωe and npω. This variable is called the slip. Specifically, for small slip, the torque 

is approximately given by 
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Equation (3) as well as Fig. 1 show that the torque decreases rapidly when the electrical 

frequency increases. 

 

2.  Experiments 

You will need: 

 

2.1  Torque Curves 

Download the files Lab8.mdl and Lab8.lax.  

• Induction motor,  

• Standalone encoder,  

• Dual power amplifier,  

• Cable rack, 

• Encoder cable 

• A metal frame to mount the motors 
on, with a box of screws and a 
screwdriver.  



The experiment applies two-phase voltages of the form (1) to the motor. The operator 

enters values for the peak voltage and for the electrical frequency expressed in terms of the 

synchronous speed (in rpm). The induction motor has 1 pole pair (np = 1), so that a 

frequency of 60 Hz corresponds to a synchronous speed of 3,600 rpm. 60 Hz is the nominal 

frequency for the motor under consideration. 

 

Figure 2: Layout 

Important: please note that the two windings of the induction motor are connected 

together. Although there are four banana plugs on the motor frame, the two middle plugs 

(colored blue) are connected to the same wire. The two ground plugs of the amplifier are 

also connected together. Therefore, make sure that the grounds of both amplifiers (black 

outputs of the amplifiers) are connected to the blue plugs of the motor frame. Also, if the 

direction of rotation is negative in your initial experiments, swap the phases, so that the 

direction of rotation becomes positive. 

Build the .mdl, create a new project & experiment structure in dSPACE, load the .sdf and 

layout files. The layout should look something like the one shown in Fig. 2 after you’re 

done mapping the variables to the instruments. Measure the response of the motor for 



sinusoidal voltages with a peak value of 25V and a synchronous speed of 3,600 rpm. 

Determine the value of the speed in steady-state (it is useful to average the velocity over 

some period of time after it has stabilized). Calculate the values of the slip (in rad/s) and 

of the normalized slip (in %). Repeat for frequencies corresponding to 2,400 rpm and 1,200 

rpm, and plot the velocity ω  vs. time in all three cases. 

Measuring the torque curves precisely would require a torque sensor. However, useful 

results can be obtained from the acceleration of the motor alone. The torque itself is not 

obtained. Rather, the torque divided by the inertia J is obtained. Fortunately, that is all that 

is needed for control system design. Specifically, one has that  
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assuming that the electromagnetic torque can be approximated by the steady-state value. 

Further assuming that the load torque is constant (it consists mostly of Coulomb friction in 

the set-up), the torque ��	
, 
� divided by the inertia J is equal to the angular acceleration 

plus some constant value.  

The acceleration of the motor can be reconstructed using numerical differentiation. For 

this purpose, it is necessary to filter the velocity. Apply a Butterworth filter and 

differentiate your captured data using, for example, the code below 

[b,a] =butter(3,0.01); % 0.01 is the cutoff frequency divided by half the sampling frequency    
speed_filt = filter(b,a,inc_vel) 
dw = [0 diff(speed_filt)]/Ts; 

where Ts=1e-3 is the sampling period. Plot the acceleration (dω/dt) vs. slip (ωe‒ω) for 

synchronous frequencies corresponding to 3,600 rpm, 2,400 rpm, and  1,200 rpm. You 

should recognize the shape of the torque curves shown in the Fig. 1, but expect a very 

approximate resemblance, given the need to reconstruct acceleration.  

For small slip and  np =1, one has that 
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where ωss is the steady-state speed.  Therefore 
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In other words, k is the slope of the line relating dω/dt to 	
� − 
 close to 	
� − 
00.  

From the plot of acceleration vs. slip, find the value of the constant k such that the best 

fit is obtained in the linear region. The result can be achieved by manually adjusting the 

parameters of a line so that it becomes tangent to the plot of the acceleration in Matlab, or 

by using some other method of your choice. The estimate of k will be very approximate, 

but only an approximate number is needed for control design. 

Report values of k for each of the three speeds. Equation (6) predicts that the 

constant k is inversely proportional to (1 + ( Ls/Rs)
2.(ωe)

2). From this fact, and using the 

values of k  at 1,200 rpm and 2,400 rpm, determine a ballpark estimate of the constant 

Ls/Rs.  

 

Requirements for Full Credit:  The list below is a reference for your benefit. Be sure to 

include comments and explanation for all work 

performed and results observed/produced. 

 

• Introduction with stated objectives. 

• Plot of speed vs. time for synchronous speeds of 1,200, 2,400, and 3,600 rpm. 

• Tabulated values of the steady-state speed, slip, and normalized slip for each speed. 

• Plot of the (filtered) acceleration vs. slip,  for synchronous speeds of 1,200 rpm, 2,400 

rpm, and 3,600 rpm. Include plots of the linear approximation around the steady-state 

speed. 

• Values of the parameter k for each speed. 

• Calculation of the estimate of Ts =Ls/ Rs. 

• Conclusion with reference to stated objectives. Describe what worked well and did 

not work well in this lab, and make suggestions for possible improvements. 

*Be sure to LABEL the axes of all your plots and to include UNITS on all of your 

values. Comments should also always accompany any plot. 


