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2.7. Temporal coherence

An ideal light source emits perfectly monochromatic (i.e. single frequency, or temporally
coherent), and spatially coherent radiation, such as described by the simple plane wave
solution

E(z, t) = E0e
j(ω0t−k0z).

This solution has a well defined angular frequency ω0 = 2πν0, resulting from the fact that the
solution extends sinusoidally over all values of time, and therefore exhibits perfect temporal
coherence, which means that we can predict the phase of the wave for any time given the
value of the phase at some known time. Therefore, the wavefront has perfect temporal
correlation. In addition, being a plane wave with well defined wavefronts that cover all space
transverse to the direction of propagation, this solution has perfect spatial coherence, which
means that we can preduct the phase of the wave for any point in a transverse plane given
the phase at some known point in that same plane.

No real light source has perfect coherence. We will first talk about limited temporal
coherence. For a source with limited temporal coherence, there exists some frequency band-
width δν about the center frequency ν0. For an incoherent light source, δν is determined by
the natural linewidth of the source. A laser source, on the other hand, typically has multiple
longitudinal modes νm, each with linewidth δν controlled by the cavity finesse F (and the
effects of gain narrowing). The longitudinal modes are spaced in frequency by ∆ν = c/2L,
which is set by the cavity length L. The number of longitudinal modes is determined by
∆ν and the gain bandwidth, which arises from either a single homogeneously-broadened
atomic or molecular resonance, or a collection of many such resonances, which is termed
inhomogeneous broadening.

The best way to think about temporal coherence is to consider an amplitude-splitting
Michelson interferometer, which is used to generate two identical wavefronts from the output
of a single light source, as shown in the figure. One of these wavefronts can be delayed with

respect to the other by a movable mirror. Light from the source passes through the beam-
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splitter which breaks the beam into two paths - one beam for each arm of the interferometer.
Each beam reflects off a mirror and passes through the beamsplitter again. Under square-law
detection, the wavefronts combine to form intensity interference fringes at the output.

Assume that the electric field of the source output is written

Re [A(r, t)]

The beamsplitter divides the intensity in half (and therefore divides the field by a factor√
2). The electric field in the observation plane can be written

E(r, t) =
1

2
A(t)− 1

2
A(t− 2∆/c)eikf sin θx,

where ∆ = l1 − l2 and 2∆ is the total path length difference between the two arms of the
interferometer and θ is a small tilt angle between the two interfering beams that gives rise
to a spatial fringe pattern. Any detector will only sense the time-averaged optical intensity,
which is given by

〈I(x, t)〉 =
1

2η
〈|E(x, t)|2〉

=
1

2
〈I〉 [1 + γ(τ) cos (kxx)] ,

where τ = 2∆/c, kx = kf sin(θ), and the degree of coherence

γ(τ) =
(1/2η)Γ(τ)

〈I〉 ,

which is essentially the “coherence envelope.” The mutual coherence function is defined as

Γ(τ) = 〈A∗A(τ)〉,

and is the autocorrelation of the electric field. The mutual coherence function can also be
calculated from the inverse-Fourier transform of the spectral intensity of the field:

Γ(τ) = F−1{I(ν)}.

The “visibility” of the spatial interference fringes at the ouput of the interferometer is
an easily measured quantity. The visibility is defined as the ratio

V =
Imax − Imin

Imax + Imin
,

where Imax = (1/2)〈I〉[1 + γ(τ)] is the maximum intensity of the fringe pattern and Imin =
(1/2)〈I〉[1 − γ(τ)] is the minimum intensity of the fringe pattern. Therefore, the visibility
can be re-written

V (τ) = γ(τ) ∝ F−1{I(ν)},

which is the degree of coherence. Therefore, the measure of the fringe visibility as a function
of path length difference maps out the degree of coherence of the source. It should also
be mentioned that 0 ≤ V ≤ 1 - for a perfectly monochromatic (temporally coherent) field,
V = 1, and for a perfectly incoherent (infinitely broadband) field, V = 0.
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From the Fourier relationship between the source spectral density and the visibility, it
is a relatively straightforward process to determine the coherence length from the spectral
characteristics. The coherence time tc is defined as the difference in values of τ about τ = 0
for which the fringe visibility drops to 0.5, i.e. tc is the temporal FWHM about zero path
length. For an incoherent source of linewidth δν, the width of the coherence function γ is
tc = 1/δν, and is the time over which the frequencies remain approximately in-phase. The
coherence time gives rise to a coherence length lc = ctc, which is the physical distance over
which coherence is maintained. Therefore, a spectrally pure source (such as a stabilized single
longitudinal-mode laser) would have a long coherence time and length, while a spectrally
broad-band source (such as white light or multi-mode laser) would have a short coherence
length.

Most lasers oscillate in multiple longitudinal modes, where each longitudinal mode “sam-
ples” the gain bandwidth curve at intervals ∆ν. The lasing spectrum is shown on the
left-hand side of the following figure. The coherence function for such a laser is periodic (due

F⇐⇒

to sampling in the Fourier domain), and modulated by a long envelope, as shown on the
right-hand side of the figure. The coherence length is the width of the narrow periodic lobes,
given by lc = c/(n − 1)∆ν, where n is the number of longitudinal modes and (n − 1)∆ν is
the total bandwidth of the source. The width of the envelope of the coherence (or visibility)
function is given by c/δν, and results in reduced visibility over distances much longer than
the actual coherence length.
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2.8. Scalar Diffraction
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z = 0 z = L

We want to describe the propagation of a beam from a plane at z = 0 to a plane of
z = L. Assume a monochromatic field e(x, y, z, t) = A(x, y, z)ejωt. The scalar wave equation
∇2e = µε∂2e

∂t2 becomes ∇2A+ k2A = 0 where k2 = ω2µε . The fundamental solutions of this
equation are plane waves (i.e. plane waves are the eigenmodes, or the stationary solutions).
Each plane wave progagates with a different propagation constant kz. Therefore, it makes
sense to decompose the electric field at z = 0 into a set of plane waves. This operation is
known as the Fourier transform:

Ã (kx, ky) =

∫ ∫
A(x, y)e−j(kxx+kyy)dxdy

Now, we have to figure out how to evolve the complex amplitude Ã of each plane wave. We
do this by transforming the wave equation:

∇2A+ k2A = 0 〈 Fxy

Fkxky

〉 −
(
k2
x + k2

y

)
Ã+ k2Ã+

∂2Ã

∂2
= 0

The Fourier equation can be solved

Ã (kx, ky, z) = Ã (kx, ky, 0) e
jkzz

where the wavenumber

kz =
√
k2 − k2

x − k2
y H = (kx, ky, z) = e−jkzz

is the transfer function of propagation.
To recover the electric field at z = L , we inverse transform Ã (kx, ky, z = L) as follows:

A(x, y, z = L) =
1

4π2

∫ ∫
Ã (kx, ky, z = L) e−jkzzej(kxx+kyy)dkydky

For small angles of propagation ky, ky << k, then we can write

kz =
√
k2 − k2

k − k2
y ≈ k

(
1−

k2
x + k2

y

2k2

)
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and the Fourier integral can be evaluated

A(x, y, z = L) =
1

4π2

∫ ∫
A(x′, y′, 0) p(x− x′, y − y′)dx′dy′

which is a convolution between A and p, where p is the impulse response function of propa-
gation

p = F−1

{
e
−jk

(
1−

k2x+k2y
2k2

)
L

}
=

2πik

L
e−jkLe−jk x2+y2

2L

Written out in full

A(x, y, z = L) =
j

λL
e−jkL

∫ ∫
A(x′, y′, 0)e−

jk
2L [(x−x′)2+(y−y′)2]dx′dy′

which is the Fresnel-Kirchoff diffraction integral.
Now, let’s use this integral to calculate the diffraction pattern from a rectangular slit (see

Fig. 1.25 in the book). Since this is a 1-D problem, the integral reduces to

A(x, z = L) =
j

λL
e−jkL

∫
A(x′, 0)e−

jk
2L (x−x′)2dx′.

We assume that the field is constant across the aperture (i.e. the aperture is illuminated by
a plane wave), so that

A(x, z = L) =
jA0

λL
e−jkL

∫ a/2

−a/2

e−
jk
2L (x−x′)2dx′.

This integral can be evaluated in general using elliptic functions, but we will make one
simplification that the size of the aperture divided by the observation distance is small, so
that we can ignore (x′)2/L. This is called the Fraunhofer approximation, and the integral
reduces to

A(x, z = L) =
jA0

λL
e−jkLejx

2/2L

∫ a/2

−a/2

e−
jk
L xx′

dx′.

After performing the integration, we get the following solution:

A(x, z = L) = aA0sinc

(
kax

2L

)
= aA0sinc

(
ka sin θ

2

)
,

where sin θ = x/L and we’ve neglected the phase terms.
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2.9. Spatial coherence

For a source with limited spatial coherence, there exists some angular spread about the prop-
agation direction ,k. Therefore, a plane wave has perfect spatial coherence since it propagates
in a single direction with a well-defined wavevector. Spatial coherence can be measured by
interfering two different portions of a wavefront. This can be accomplished by using a
wavefront splitting interferometer, as illustrated in the figure for the Young’s double slit
interferometer. The visibility of the fringe pattern is measured as function of the separation
- between the two slits. The value of - for which the visibility drops to 1/2 is called the
spatial coherence length.

From our diffraction integral, we can describe the field at the observation plane from the
expression

A(x, z = L) =
j

λL
e−jkL

∫
[A(x′ − -/2, 0) + A(x′ + -/2, 0)] e−

jk
2L (x−x′)2dx′.

We could go ahead and evaluate this integral as before, but if we assume that the width of
each slit is small, then each slit can be described by a delta function:

A(x, z = L) =
j

λL
e−jkL

∫
[A0δ(x

′ − -/2) + A0δ(x
′ + -/2)] e−

jk
2L (x−x′)2dx′,

so that the amplitude on the screen is given by

A(x, z = L) ∝ cos

(
k-x

2L

)
,

under the Fraunhofer approximation.
Taking into account spatial coherence, the time-averaged intensity would be

〈I(x, t)〉 =
1

2η
〈|E(x, t)|2〉

=
1

2
〈I〉 [1 + γ(-) cos (k-x/2L)] ,

and the degree of coherence

γ(-) =
(1/2η)Γ(-)

〈I〉 ,

which is spatial coherence envelope. The mutual coherence function is defined as

Γ(-) = 〈A∗A(-)〉,

and is the spatial autocorrelation of the electric field. The mutual coherence function can
also be calculated from the inverse-Fourier transform of the transverse spatial frequency of
the field:

Γ(-) = F−1{I(kx)}.


