

## Examples #4

1. For the MOS differential pair with a common-mode voltage  $V_{CM}$  applied, as shown below, let  $V_{DD}=V_{SS}=1V$ ,  $k_n'=0.4$ mA/V<sup>2</sup>,  $(W/L)_{1,2}=12.5$ ,  $V_t=0.5V$ , I=0.2mA, and  $R_D=10$ k $\Omega$  (neglect channel-length modulation). Assume that the current source I requires a minimum voltage of 0.4V to operate properly. (worth 2 problems)

(a) Find  $V_{GS}$  for each transistor.

- (b) For  $V_{CM}$ =0 find  $V_S$ ,  $I_{D1}$ ,  $I_{D2}$ ,  $V_{D1}$ , and  $V_{D2}$ .
- (c) Repeat (b) for  $V_{CM}=0.3V$ .
- (d) Repeat (b) for  $V_{CM}$ =-0.1V.
- (e) What is the highest permitted value of  $V_{\mbox{\tiny CM}}$  for which
- Q1 and Q2 remain in saturation?

(f) If the current source requires a minimum of 0.2V across it to operate correctly, what is the lowest value allowed for Vs and hence for  $V_{CM}$ ?

note that 
$$I_{D1} = I_{D2} = \frac{1}{2} = \frac{0.2 \text{ mA}}{2}$$
  
 $= 0.1 \text{ mA}$   
 $I_D = \frac{1}{2}k_n^1 \left(\frac{W}{L}\right) V_{OV}^2$   
 $V_{ov} = \sqrt{\frac{2I_D}{k_n'(W/L)}} = \sqrt{\frac{2(0.1 \text{ mA})}{0.4 \text{ mA}/V^2(12.5)}}$   
 $= 0.2 \text{ V}$   
 $V_{Gs} = V_{nt} + V_{ov} = 0.5 + 0.2 = 0.7 \text{ V}$   
(b) If  $V_{em} = 0$ ,  
 $V_{s1} = V_{s2} = V_G - V_{GS} = 0 - 0.7 = -0.7 \text{ V}$   
 $I_{D1} = I_{D2} = \frac{0.2 \text{ mA}}{2} = 0.1 \text{ mA}$   
 $V_{D1} = V_{D2} = V_{DD} - I_{D1}R_D$   
 $= 1\text{ V} - (0.1 \text{ mA})(10 \text{ K}) = 0 \text{ V}$   
(c) Now, if  $V_{ICM} = 0.1 \text{ V}$ ,  
 $V_{s1} = V_{s2} = V_C - V_{GS} = 0.1 \text{ V} - 0.7 \text{ V}$   
 $= -0.6 \text{ V}$   
Since  $I$  is a constant current source,  
 $I_{D1}$  and  $I_{D2}$  remain at 0.1 mA  
This means that  
 $V_{D1}$  and  $V_{D2}$  are still 0 V







2. For the differential amplifier of Problem 1, let  $V_{G2}=0$  and  $V_{G2}=V_{id}$ . Find the value of  $V_{id}$  that corresponds to each of the following situations:

(a)  $i_{D1}=i_{D2}=0.1$ mA; (b)  $i_{D1}=0.15$ mA and  $i_{D2}=0.05$ mA; (c)  $i_{D1}=.2$ mA and  $i_{D2}=0$ (Q2 just cuts off); (d)  $i_{D1}=0.05$ mA and  $i_{D2}=0.15$ mA; (e)  $i_{D1}=0$  (Q1 just cuts off) and  $i_{D2}=0.2$ mA. For each case, find  $v_s$ ,  $v_{D1}$ ,  $v_{D2}$ , and  $(v_{D2}-v_{D1})$ .

$$V_{OV} = \sqrt{\frac{2I_D}{k_n'(W/L)}} = \sqrt{\frac{-2(0.1 \text{ mA})}{0.4 \text{ mA} / V^2(12.5)}} = 0.2 \text{ V}$$
(a)  $V_{GS} = V_{OV} + V_t = 0.2 \text{ V} + 0.5 \text{ V} = 0.7 \text{ V}$ 
 $V_S = V_G - V_{GS} = 0 - 0.7 \text{ V} = -0.7 \text{ V}$ 
 $V_{D1} = V_{D2} = V_{DD} - i_{D1}R_D = 1.0 \text{ V} - 0.1 \text{ mA}$ 
(10 k $\Omega$ ) = 0 V
 $V_{D2} - V_{D1} = 0 \text{ V}$ 
(b) For  $i_{D1} = 0.15 \text{ mA}$ ,  $i_{D2} = 0.05 \text{ mA}$ ,
 $i_{D1} = \frac{I}{2} + \frac{I}{V_{OV}} \cdot \frac{v_{id}}{2} \rightarrow v_{id} = \left(\frac{2i_{D1}}{I} - 1\right) \cdot V_{OV}$ 
 $v_{id} = \left[\frac{2(0.15 \text{ mA})}{0.2 \text{ mA}} - 1\right] (0.2 \text{ V}) = 0.1 \text{ V}$ 
 $V_{GS1} = \sqrt{\frac{2(0.15 \text{ mA})}{0.4 \text{ mA} / V^2(12.5)}} + 0.5 \text{ V} = 0.745 \text{ V}$ 
 $V_{D1} = V_{DD} - i_{D1}R_D = 1.0 \text{ V} - 0.15 \text{ mA}(10 \text{ k}\Omega)$ 
 $= -0.5 \text{ V}$ 
 $V_{D2} - V_{D1} = 1.0 \text{ V}$ 
(c)  $i_{D1} = 0.2 \text{ mA}$ ,  $i_{D2} = 0$ :
 $V_{G1} = v_{id} = \sqrt{2} \cdot V_{OV} = 1.414(0.2 \text{ V}) = 0.283 \text{ V}$ 
 $V_{GS} = \sqrt{\frac{2(0.2 \text{ mA})}{0.4 \text{ mA} / V^2(12.5)}} + 0.5 \text{ V} = 0.783$ 
 $V_{S} = V_G - V_{GS} = 0.283 \text{ V} - 0.783 \text{ V} = -0.5 \text{ V}$ 
 $V_{D2} - V_{D1} = 1.0 \text{ V}$ 
(c)  $i_{D1} = 0.2 \text{ mA}$ ,  $i_{D2} = 0$ :
 $V_{G1} = v_{id} = \sqrt{2} \cdot V_{OV} = 1.414(0.2 \text{ V}) = 0.283 \text{ V}$ 
 $V_{D2} = \frac{2(0.2 \text{ mA})}{\sqrt{0.4 \text{ mA} / V^2(12.5)}} + 0.5 \text{ V} = 0.783$ 
 $V_{D2} = 1.0 \text{ V} - (0.2 \text{ mA})(10 \text{ k}\Omega) = -1.0 \text{ V}$ 
 $V_{D2} = + 1.0 \text{ V}$ 

(d)  $\frac{i_{D1} = 0.05 \text{ mA}}{i_{D2} = 0.05 \text{ mA}}$  opposite case of (b) For example,  $v_{ld} = \left[\frac{2(0.05 \text{ mA})}{0.2 \text{ mA}} - 1\right](0.2 \text{ V}) = -0.1 \text{ V}$   $V_{GS} = \sqrt{\frac{2(0.05 \text{ mA})}{0.4 \text{ mA} / \text{V}^2(12.5)}} + 0.5 \text{ V} = 0.641 \text{ V}$   $V_s = V_G - V_{GS} = -0.1 \text{ V} - 0.641 \text{ V} = -0.741 \text{ V}$   $V_{D1} = 1.0 \text{ V} - (0.05 \text{ mA})(10 \text{ k}\Omega) = +0.5 \text{ V}$   $V_{D2} = 1.0 \text{ V} - (0.05 \text{ mA})(10 \text{ k}\Omega) = -0.5 \text{ V}$   $V_{D2} - V_{D1} = -1.0 \text{ V}$ (e)  $i_{D1} = 0 \text{ mA}, i_{D2} = 0.2 \text{ mA}$  is the opposite of (c):  $v_{id} = -\sqrt{2}(V_{OV}) = -\sqrt{2}(0.2 \text{ V}) = -0.283 \text{ V}$ For  $i_{D2} = 0.2 \text{ mA}, V_{GS2} = 0.783 \text{ V}$ , So that  $V_S = -0.783 \text{ V}$  $V_{D1} = 1.0 \text{ V}$ ,

$$V_{D2} = -1.0 \text{ V} \rightarrow V_{D2} - V_{D1} = -2 \text{ V}$$
  
The results are summarized in the following table:

| Ca<br>se | V <sub>id</sub><br>(V) | i <sub>D1</sub><br>(mA) | i <sub>D2</sub><br>(mA) | $V_s(V)$   | V <sub>D1</sub> (<br>V) | V <sub>D2</sub><br>(V) | $V_{D2} - V_D$ $I(V)$ |
|----------|------------------------|-------------------------|-------------------------|------------|-------------------------|------------------------|-----------------------|
| (a)      | 0                      | 0.1                     | 0.1                     | -0.7       | 0                       | 0                      | 0                     |
| (b)      | 0.1                    | 0.15                    | 0.05                    | 0.645      | -0.5                    | 0.5                    | 1.0                   |
| (c)      | 0.28<br>3              | 0.2                     | 0                       | -0.5       | -1.0                    | 1.0                    | 2.0                   |
| (d)      | -0.1                   | 0.05                    | 0.15                    | -<br>0.741 | 0.5                     | -0.5                   | -1.0                  |
| (e)      | -<br>0.28<br>3         | 0                       | 0.2                     | -<br>0.783 | 1.0                     | -1.0                   | -2.0                  |

## Examples #4



3. Consider the differential amplifier specified in Problem 1 with G2 grounded and  $V_{G1} = V_{id}$ . Let  $V_{id}$  be adjusted to the value that causes  $i_{D1}$ =0.11mA and  $i_{D2}$ =0.09mA. Find the corresponding values of  $V_{GS2}$ ,  $V_s$ ,  $V_{GS1}$ , and hence  $V_{id}$ . What is the difference output voltage  $(V_{D2}-V_{D1})$ ? What is the voltage gain  $(V_{D2}-V_{D1})/V_{id}$ ? What value of  $V_{id}$  results in  $i_{D1}$ =0.09mA and  $i_{D2}$ =0.11mA?

$$V_{G1} = v_{id} i_{D1} = 0.11 \text{ mA}$$

$$V_{G2} = 0 \quad i_{D2} = 0.09 \text{ mA}$$

$$I_D = \frac{1}{2} k'_n \frac{W}{L} (V_{GS} - V_t)^2$$
For  $Q_1$ :  

$$0.11 \text{ m} = \frac{1}{2} 5 \text{ m} (V_{GS1} - 0.5)^2$$
 $\rightarrow V_{GS1} = 0.71 \text{ V}$ 
For  $Q_2$ :  

$$0.09 \text{ m} = \frac{1}{2} 5 \text{ m} (V_{GS2} - 0.5)^2$$
 $\rightarrow V_{GS2} = 0.69 \text{ V}$ 
 $V_S = -V_{GS2} = -0.69 \text{ V}$   
 $v_{id} = V_S + V_{GS1} = -0.69 + 0.71$   
 $= 0.02 \text{ V}$ 

 $V_{D2} - V_{D1} = 10 \text{ k}\Omega (i_{D1} - i_{D2})$ = 10 kV (0.11 2 0.09) m = 0.2 V thus  $\frac{V_{D2} - V_{D1}}{v_{id}} = \frac{0.2}{0.02} = 10$ when  $i_{D1} = 0.09$  mA and  $i_{D2} = 0.11$  mA is the reverse condition from the case we just studied, thus  $v_{id} = -0.02$  V



## Examples #4

4. Design the circuit shown below to obtain a dc voltage of +2V at each of the drains of Q1 and Q2 when  $V_{G1}=V_{G2}=0V$ . Operate all transistors at  $V_{ov}=0.2V$  and assume that for the process technology in which the circuit is fabricated,  $V_{tn}=0.5V$  and  $k_n'=250\mu A/V^2$ . Neglect channel-length modulation. Determine the values of R, R<sub>D</sub>, and the W/L ratios of Q1, Q2, Q3, and Q4. What is the input common-mode range for



5. Design a MOS differential amplifier to operate from  $\pm 1V$  power supplies and dissipate no more than 2mW in the equilibrium state. The differential voltage gain  $A_d$  is to be 5 V/V and the output common-mode dc voltage is to be 0.5V. (Note: This is the dc voltage at the drains). Assume  $k_n'=400\mu A/V^2$  and neglect the Early effect. Specify the required values of I,  $R_D$ , and W/L.

+1 V supplies not more than 2 mW 
$$A_d = 5 \text{ V/V}$$
  
 $V_b = 0.5 \text{ V} K_n' = \mu_n C_{ox} = 0.4 \text{ mA/V}^2$   
 $I = \frac{2 \text{ mW}}{1 \text{ V} - (-1 \text{ V})} = 1 \text{ mA}$   
 $R_D = \frac{1 \text{ V} - 0.5 \text{ V}}{1/2 I} = \frac{0.5 \text{ V}}{0.5 \text{ mA}} = 1 \text{ k}\Omega$   
 $g_m = \frac{A_d}{R_D} = \frac{5 \text{ V/V}}{1 \text{ k}\Omega} = 5 \text{ mA/V}$   
 $V_{OV} = \frac{I}{g_m} = \frac{1 \text{ mA}}{5 \text{ mA/V}} = 0.2 \text{ V}$ 

$$\frac{W}{L} = 2(I/2) / (k_n' V_{OV}^2)$$

=  $1 \text{ mA} / (0.4 \text{ mA/V}^2 \cdot (0.2 \text{ V})^2) = 62.5$ BECAUSE WE PICKED I = 1 mA THIS IS THE SOLUTION WITH THE HIGHEST ALLOW-ABLE POWER. THIS SOLUTION WILL ALSO THEREFORE HAVE THE WIDEST RANGE OF DIFFERENTIAL MODE OPERATION. AN INFINITE NUMBER OF OTHER SOLUTIONS EXIST.



6. An NMOS differential amplifier is operated at a bias current I of 0.4mA and has a W/L ratio of 32,

 $k_n'=\mu_n C_{ox}=200\mu A/V^2$ ,  $V_A=10V$ , and  $R_D=5k\Omega$ . Find  $V_{ov}=(V_{GS}-V_t)$ ,  $g_m$ ,  $r_o$ , and  $A_d$ .

$$I = 0.4 \text{ mA} \quad W/L = 32 \quad k_n = \mu_n \ C_{ox}$$
  
= 200 \(\mu \mathbf{A} / \mathbf{V}^2\)  
$$V_A = 10 \ V \qquad R_D = 5 \ k\Omega$$
  
$$V_{OV}' = \sqrt{I/k'_n \left(\frac{W}{L}\right)} = \sqrt{0.4/(0.2 \cdot 32)}$$
  
= 0.25 \(\mathbf{V}\)  
$$g_m = \frac{I}{V_{OV}} = \frac{0.4 \ \text{mA}}{0.25 \ \text{V}} = 1.6 \ \text{mA} / \(\mathbf{V}\)$$
  
$$r_O = \frac{V_A}{I_D} = \frac{10 \ \text{V}}{0.2 \ \text{mA}} = 50 \ \text{k}\Omega$$
  
$$A_d = g_m \(R_D \| r_O) = 1.6 \ (5 \| 50)$$
  
= 1.6 \((4.54) = 7.3 \ \text{V} / \(\mathbf{V}\)

7. An active-loaded NMOS differential amplifier operates with a bias current I of 100µA. The NMOS transistors are operated at V<sub>ov</sub>=0.2V and the PMOS dives at  $|V_{ov}|$ =0.3V. The Early voltages are 20V for the NMOS and 12V for the PMOS transistors. Find  $G_m$ , R<sub>o</sub>(output R), and  $A_d$ . For what value of load resistance is the gain reduced by a factor of 2?



 $R_o = r_{o2} \parallel r_{o4} = 400 \text{ k} \parallel 240 \text{ k} = 150 \text{ k}\Omega$   $A_d = G_m R_o = (0.5 \text{ mA/V})(150 \text{ k}) = 75 \text{ V/V}$ Gain will be reduced by a factor of 2 if  $R_L = R_o = 150 \text{ k}\Omega$