1. The noninverting op-amp configuration shown to the right provides a direct implementation of a feedback loop.
(a) Assume that the op amp has infinite input resistance and zero output resistance. Find an expression for the feedback factor β.
(b) Find the condition under which the closed-loop gain A_{f} is almost entirely determined by the feedback network.
(c) If the open-loop gain $A=10^{4} \mathrm{~V} / \mathrm{V}$, find $\mathrm{R}_{2} / \mathrm{R}_{1}$ to obtain a closed-loop gain A_{f} of $100 \mathrm{~V} / \mathrm{V}$.
(d) What is the amount of feedback in decibels?
(e) If $V_{s}=1 V$, find V_{o}, V_{f}, and V_{i}.
(f) If A decreases by 20%, what is the corresponding decrease in A_{f} ?

(a) $\beta=R 1 /(R 1+R 2)$
(b) $A_{f}=A /(1+A \beta)$ if $A \beta \gg 1$ then $A_{f}=A /(A \beta)=1 /(\beta)$
(c) $A_{f}=A /(1+A \beta)=10^{4} /\left(1+10^{4} \beta\right)=100$
$10^{4}=\left(1+10^{4} \beta\right) * 100$
$\left\{\left(10^{4} / 100\right)-1\right\} / 10^{4}=\beta \quad \Rightarrow \beta=9.9 m=R 1 /(R 1+R 2)=>R 1=(R 1+R 2) * 9.9 m=>R 1-9.9 m R 1=9.9 m R 2$
$.990 R 1=9.9 m R 2=>\quad(R 2 / R 1)=(0.990 / 9.9 m)=100$
(d) $(1+A \beta)=\left(1+10^{4} * 9.9 \mathrm{~m}\right)=100$ which is $20 \log (100)=40 \mathrm{~dB}$
(e) $\mathrm{Vo}_{\mathrm{o}}=\mathrm{A}_{\mathrm{f}} \mathrm{V}_{\mathrm{s}}=100 * 1=100 \mathrm{~V} ; \mathrm{V}_{\mathrm{f}}=\beta \mathrm{Vo}=9.9 \mathrm{~m} * 100=0.990 \mathrm{~V} ; \mathrm{V}_{\mathrm{i}}=\mathrm{Vo} / \mathrm{A}=100 / 10^{4}=10 \mathrm{mV}$ Note that in order to achieve $\mathrm{Vo}=100 \mathrm{~V}$, the power supply would need to be that large!
(f) If A decreases by $20 \%=>A=0.8 \times 10^{4} V / V ; A f=0.8 \times 10^{4} /\left(1+0.8 \times 10^{4} \times 9.9 \mathrm{~m}\right)=99.75 \mathrm{~V} / \mathrm{V}$
2. Consider the noninverting op-amp of Problem 1. Let the open-loop gain A have a low-frequency value of 10^{4} and a uniform $-6 \mathrm{~dB} /$ octave rolloff at high frequencies with a 3 dB frequency of 100 Hz . Find the low-frequency gain and the upper $3 d B$ frequency of a closed-loop amplifier with $R_{1}=1 k \Omega$ and $R_{2}=90 k \Omega$.
$\mathrm{A}=10^{4}$ and $\mathrm{f}_{\mathrm{H}}=100 \mathrm{~Hz}$
$\beta=R 1 /(R 1+R 2)=1 k / 91 k=11 m$
$(1+A \beta)=\left(1+10^{4} * 11 \mathrm{~m}\right)=111$
$A_{f}=A /(1+A B)=10^{4} /(111)=90 \mathrm{~V} / \mathrm{V}$
$f_{H f}=f_{H}(1+A \beta)=100^{*}(111)=11.1 \mathrm{kHz}$
3. For the circuit below let $\left(R_{1}+R_{2}\right) \gg R_{D}$. Using small-signal analysis, find expressions for the open-loop gain $A \equiv V_{0} / V_{i}$; the feedback factor $\beta \equiv \mathrm{V}_{\mathrm{f}} / \mathrm{V}_{\mathrm{o}}$; and the closed loop gain $A_{f} \equiv \mathrm{~V}_{0} / \mathrm{V}_{\mathrm{s}}$. For $A \beta \gg 1$, find an approximate expression for A_{f}. Neglect r_{o}.

Closed-loop gain A_{f}

$$
\begin{aligned}
& A_{f}=\frac{V_{0}}{V_{S}} \\
& V_{O}=-g_{m} V_{g s} \times\left\{\left(R_{1}+R_{2}\right) \| R_{D}\right\} \\
& =-g_{m} V_{g g} \cdot \frac{\left(R_{2}+R_{1}\right) R_{D}}{R_{2}+R_{1}+R_{D}} \\
& \text { but } R_{2}+R_{1} \gg R_{D} \quad R_{2}+R_{1}+R_{D} \simeq R_{2}+R_{1} \\
& \rightarrow V_{o}=\left(-g_{m} V_{g s} \cdot \frac{\left(R_{2}+R_{1}\right) R_{D}}{R_{2}+R_{1}}\right) \\
& \quad=-g_{m} V_{g s}, R_{D} \\
& -V_{g s}=V_{s}-V_{f}=V_{s}-\frac{R_{1} V_{O}}{R_{1}+R_{2}}
\end{aligned}
$$

$$
\Rightarrow V_{O}=g_{m} R_{D}\left\{V_{S}-\frac{R_{1} V_{O}}{R_{1}+R_{2}}\right\}
$$

$$
\Rightarrow V_{o}\left\{1+\frac{g_{m} R_{D} R_{1}}{R_{\mathrm{I}}+R_{2}}\right\}=g_{m} R_{D} V_{S}
$$

Thus:
$A_{f}=\frac{V_{O}}{V_{S}}=\frac{g_{m} R_{D}}{1+g_{m} R_{D} R_{1} /\left(R_{1}+R_{2}\right)}$
if $A \cdot \beta \gg 1 \Rightarrow\left(g_{m} R_{D}\right) \cdot R_{1} /\left(R_{1}+R_{2}\right) \gg 1$
$A_{f}=\frac{g_{m} R_{D}}{g_{m} R_{D} R_{1} /\left(R_{1}+R_{2}\right)}=\frac{R_{1}+R_{2}}{R_{1}}$
$=1+\frac{R_{2}}{R_{1}}$
4. A negative-feedback amplifier has a closed-loop gain $A_{f}=100$ and an open-loop gain $A=10^{4}$. What is the feedback factor β ? If a manufacturing error results in a reduction of A to 10^{3}, what closed-loop gain results? What is the percentage change in A_{f} corresponding to this factor of 10 reduction in A ?

$$
\begin{aligned}
& A_{f}=\frac{A}{1+A \beta}=100 \\
& \Rightarrow A \beta=\frac{10^{4}}{100}-1=99 \\
& \Rightarrow \beta=\frac{99}{10^{4}}=9.9 \times 10^{-3}
\end{aligned}
$$

If $A=10^{3}$, then

$$
\begin{aligned}
& A_{f}=\frac{10^{3}}{1+10^{3} \times 9.9 \times 10^{-3}}=91.74 \\
& \frac{\Delta A_{f}}{A_{f}}=\frac{91.74-100}{100}=-8.26 \%
\end{aligned}
$$

5. Consider the op-amp circuit shown below where the op amp has infinite input resistance and zero output resistance but finite open-loop gain A.
(a) Convince yourself that $\beta=R_{1} /\left(R_{1}+R_{2}\right)$
(b) If $\mathrm{R}_{1}=10 \mathrm{k} \Omega$, find R_{2} that results in $A_{f}=10 \mathrm{~V} / \mathrm{V}$ for the following three cases: (i) $A=1000 \mathrm{~V} / \mathrm{V}$; (ii) $A=100 \mathrm{~V} / \mathrm{V}$; (iii) $A=12$ V / V.
(c) For each of the three cases in (b), find the percentage change in A_{f} that results when A decreases by 20%. Comment on the results.

$$
\begin{gathered}
V_{f}=\beta V_{O}=\frac{R_{1}}{R_{1}+R_{2}} \cdot V_{O} \\
\Rightarrow \beta=\frac{R_{1}}{R_{1}+R_{2}}
\end{gathered}
$$

(b) $R_{1}=10 \mathrm{k} \Omega, A_{y}=10 \mathrm{~V} / \mathrm{V}$, what is R_{2} if:
(i) $A=1000 \mathrm{~V} / \mathrm{V}$

$$
\begin{aligned}
A_{f} & =\frac{A}{1+\beta A} \Rightarrow \beta=\frac{1}{A_{f}}-\frac{1}{A} \\
= & \frac{1}{10}-\frac{1}{10^{3}}=0.099 \\
\beta & =\frac{R_{\mathbf{1}}}{R_{1}+R_{2}} \Rightarrow R_{2}=R_{1}\left(\frac{1-\beta}{\beta}\right) \\
& =10 \mathrm{~K} \frac{(1-0.099)}{0.099}=91.01 \mathrm{k} \Omega
\end{aligned}
$$

(ii) $A=100 \mathrm{~V} / \mathrm{V}$
$\beta=\frac{1}{10}-\frac{1}{100}=0.09$;
$R_{2}=10 \mathrm{~K} \frac{(1-0.09)}{0.09}=101.11 \mathrm{~K}$
(iii) $A=12$
$\beta=\frac{1}{10}-\frac{1}{12}=0.0167$;
$R_{2}=10 \mathrm{~K} \frac{(1-0.0167)}{0.0167}=588.8 \mathrm{k} \Omega$
(c) if A decreases by 20%
(i) $A=0.8 \times 1000=800 \mathrm{~V} / \mathrm{V}$
$A_{f}=\frac{800}{1+(0.099)(800)}=9.975$

$$
\frac{\Delta A_{f}}{A}=\frac{9.975-10}{10}=-0.25 \%
$$

$$
\text { (ii) } A=0.8 \times 100=80 \mathrm{~V} / \mathrm{V}
$$

$$
A_{f}=\frac{80}{1+(0.09)(80)}=9.756
$$

$$
\frac{\Delta A_{f}}{A}=\frac{9.756-10}{10}=-2.44 \%
$$

$$
\text { (iii) } A=0.8 \times 12=9.6 \mathrm{~V} / \mathrm{V}
$$

$$
A_{f}=9.6 /(1+(0.0167)(9.6))=8.27
$$

$$
\frac{\Delta A_{f}}{A}=\frac{8.27-10}{10}=-17.26 \%
$$

6. Consider an amplifier having a midband gain A_{M} and a low-frequency response characterized by a pole at $s=-\omega_{L}$ and a zero at $s=0$. Let the amplifier be connected in a negative-feedback loop with a feedback factor β. Find an expression for the midband gain and the lower 3dB frequency of the closed-loop amplifier. By what factor have both changed?
$\mathrm{A}(S)=A m \frac{S}{S+W_{L}}$

$$
\begin{aligned}
A_{f}(\mathrm{~S}) & =\frac{A m \frac{S}{S+W_{L}}}{1+\frac{A m S}{S+W_{L}} \beta}=\frac{A m S}{S+W_{L}+A m \beta S} \\
& =\frac{A m}{1+A m \beta} \cdot \frac{S}{S+\frac{W_{L}}{1+A m \beta}}
\end{aligned}
$$

Thus

$$
\begin{aligned}
& A m_{f}=\frac{A m}{1+A m \beta} \\
& W_{L f}=\frac{W_{L}}{1+A m \beta}
\end{aligned}
$$

Both decreased by same amount
7. A capacitively coupled amplifier has a midband gain of $1000 \mathrm{~V} / \mathrm{V}$, a single high-frequency pole at 10 kHz , and a single low frequency pole at 100 Hz . Negative feedback is employed so that the midband gain is reduced to 10 . What are the upper and lower 3 dB frequencies of the closed loop gain?

$$
A_{f}=\frac{A}{1+A \beta}=10
$$

$$
\begin{aligned}
& \rightarrow 10=\frac{1000}{1+A \beta} \Rightarrow(1+A \beta)=100 \\
& f_{L}^{\prime}=f_{L} /(1+A \beta)=100 / 100=1 \mathrm{~Hz} \\
& f_{H}^{\prime}=f_{H} \times(1+A \beta)=10 \mathrm{~K} \times 100=1 \mathrm{MHz}
\end{aligned}
$$

9. A series-shunt feedback amplifier employs a basic amplifier with input and output resistances each of $2 \mathrm{k} \Omega$ and gain $A=1000 \mathrm{~V} / \mathrm{V}$. The feedback factor $\beta=0.1 \mathrm{~V} / \mathrm{V}$. Find the gain A_{f}, the input resistance R_{if}, and the output resistance $\mathrm{R}_{\text {of }}$ of the closed loop amplifier.

$$
\begin{aligned}
A_{F} & =\frac{A}{1+A \beta}=\frac{1 \times 10^{3}}{1+1 \times 10^{3} \cdot 0.1} \\
& =9.9 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

$$
\begin{aligned}
& R_{\mathrm{if}}=R_{r}(1+A \beta)=2(101)=202 \mathrm{k} \Omega \\
& R_{\mathrm{of}}=\frac{R_{O}}{(1+A \beta)}=\frac{2}{101}=19.8 \Omega
\end{aligned}
$$

10. (worth 2 problems) The circuit below shows a series-shunt amplifier in which the three MOSFETs are sized to operate at $|\mathrm{Vov}|=0.2 \mathrm{~V}$. Let $\left|\mathrm{V}_{\mathrm{t}}\right|=0.5 \mathrm{~V}$ and $\left|\mathrm{V}_{\mathrm{A}}\right|=10 \mathrm{~V}$. The current sources utilize single transistors and thus have output resistances equal to r_{o}.
(a) Show that the feedback is negative.
(b) Assuming the loop gain to be large, what do you expect the closed loop voltage gain Vo/Vs to be approximately?
(c) If Vs has a zero dc component, find the dc voltages at nodes S1, G2, S3, and G3. Verify that each of the current sources has the minimum required dc voltage across it for proper operation.
(d) Find the A circuit. Calculate the gain of each of the three stages and the overall voltage gain, A.
(e) Find β.
(f) Find the output resistance $R_{\text {out }}$.

a) Transistors Q_{1} and Q_{2} are used in CS
of UTAH
configuration. Therefore an increase in V_{8} causes the small-signal drain voltage of Q_{1} to increase, followed by a voltage increase at the drain of Q_{2}. Transistor Q_{3} is used in CD configuration. An increase in gate voltage at Q_{3} results in an increase at the output V_{0} (source of Q_{3}) which through the voltage dividing feed-back causes V_{f} to increase. The feed-back is indeed negative.

b) If the loop gain $1+A \beta$ is large then $A \beta \gg 1$
$A_{f}=\frac{A}{1+A \beta} \simeq \frac{1}{\beta}=\frac{R_{1}+R_{2}}{R_{1}}=10$
c) Find DC voltages : $V_{G S}-V_{T}=V_{O V} \rightarrow V_{G S}$
$=V_{o v}+V_{T}$ for all transistors $\left|V_{G s}\right|=0.2+0.5$
$=0.7 \mathrm{~V}$.
Then:
$V_{S 1}=V_{D C}-V_{G S 1}=0.9-0.7 \rightarrow V_{S 1}$
$=0.2 \mathrm{~V}$
$V_{G S}=0.2 \mathrm{~V}$
$V_{G 3}=V_{c 3 s}+V_{s 3}=0.7+0.2=0.9 \mathrm{~V}$
$V_{G 2}=V_{D D}-V_{S R 2}=V_{D D}-0.7$

For all current sources to operate in saturation
$\left|V_{D S}\right| \geq\left|V_{O V}\right| \quad\left|V_{O V}\right|=0.2 \mathrm{~V}$
For source $I_{1}:\left|V_{D S}\right|=V_{D D}-V_{G 2}=0.7 \mathrm{~V}$
$I_{2}: V_{D S}=V_{G 3}=0.9 \mathrm{~V}$
$I_{3}: V_{D S}=V_{S B}=0.2 \mathrm{~V}$.
d) obtain the A-circuit

Load of feed-back network at the input: $R_{1} \| R_{2}$
Load of feed-back network at the output: $R_{1}+R_{2}$
The A-circuit is:

Where $r_{o s}=r_{o}$ is the output resistance of the current sources
Gain of each stage:
$\left\{\begin{aligned} \text { All } g_{m}{ }^{\prime} \mathrm{s} & =2 I_{D} / V_{o V}=2 \times 0.1 \mathrm{~m} / 0.2 \\ & =1 \mathrm{~mA} / \mathrm{V} \\ \text { all } r_{\mathrm{o}}{ }^{\prime} \mathrm{s}= & V_{A} / I_{D}=10 / 0.1 \mathrm{~m}=100 \mathrm{k} \Omega\end{aligned}\right.$
For $Q_{1}: A_{V 1}=\frac{V_{G 2}}{V_{S}}=g_{m \text { eff }}\left(r_{O \text { eff }} \| r_{O S}\right)$
$\frac{V_{G 2}}{V_{S}}=\frac{g_{m 1}}{1+g_{m 1} R_{S}} \cdot\left(r_{O 1}\left(1+g_{m 1} R_{S}\right) \| r_{O S}\right) ;$
$R_{S}=R_{1} \| R_{2}$
$R_{S}=2 \mathrm{~K} \| 18 \mathrm{~K}=1.8 \mathrm{~K}$ and $1+g_{m} R_{s}$
$=1+1.8=2.8$
$\Rightarrow \frac{V_{G 2}}{V_{S}}=\frac{1 \mathrm{~m}}{2.8}[(100 \mathrm{~K} \times 2.8) \| 100 \mathrm{~K}]$
$=26.3 \mathrm{~V} / \mathrm{V}$
For Q_{2} :
$A_{V 2}=\frac{V_{G 3}}{V_{G 2}}=g_{m 2}\left(r_{O 2} \| r_{O S}\right)$
$r_{o z}=r_{o s}$
$g_{m^{2}}=g_{m}$
$\frac{V_{G 3}}{V_{G 2}}=g_{m} \frac{r_{O}}{2}=1 \mathrm{~m} \times \frac{100 \mathrm{~K}}{2}=50 \mathrm{~V} / \mathrm{V}$
For Q_{3} :
$r_{\text {OS }}\left\|\left(R_{1}+R_{2}\right)=100 \mathrm{~K}\right\|(18 \mathrm{~K}+2 \mathrm{~K})$
$=16.7 \mathrm{k} \Omega$
For a common-drain amplifier:
$A_{V}=\frac{r_{o} \| R_{L}}{\left(r_{O} \| R_{L}\right)+\frac{1}{g m}}$
where $R_{L}=r_{o s} \|\left(R_{1}+R_{2}\right)$
$\Rightarrow A_{V 3}=\frac{V_{O}}{V_{G 3}}=\frac{100 \mathrm{~K} \| 16.7 \mathrm{~K}}{(100 \mathrm{~K} \| 16.7 \mathrm{~K})+1 / 1 \mathrm{~m}}$
$=0.93$
(f) $A_{f}=\frac{V_{O}}{V_{S}}=\frac{A}{1+A \beta}=\frac{1223}{1+0.1 \times 1223}$

$$
=9.92 \mathrm{~V} / \mathrm{V}
$$

which is $\approx \frac{1}{\beta}=10$ as found in (b)
(g) For the common-drain stage:

$$
A=A_{V i} \cdot A_{V 2} \cdot A_{V 3}=26.3 \times 50 \times 0.93
$$

$$
=1223 \mathrm{~V} / \mathrm{V}
$$

$$
\begin{aligned}
& R_{o} \simeq \frac{1}{g_{m}}\left\|\left(r_{O S} \| R_{1}+R_{2}\right)=1 \mathrm{~K}\right\| 16.7 \mathrm{~K} \\
& =944 \Omega \\
& R_{O f}=\frac{R_{O}}{1+A \beta}=\frac{944}{1+0.1 \times 1223}=7.66 \Omega
\end{aligned}
$$

(e) Find $\beta: \beta=\frac{R_{1}}{R_{1}+R_{2}}=\frac{2}{2+18}=0.1$

Since $R_{L}=\infty \Rightarrow R_{\text {out }}=R_{\text {of }}$
(d) Alternate Solution

Hybrid-II small signal model

$$
R_{11}=R_{i}\left\|R_{2}=2 k\right\| 118 k=\frac{(2 k)(18 k)}{20 k}=1.8 \mathrm{k}
$$

$g_{m}=\frac{2 I_{0}}{V_{o v}}=\frac{2(100 \mu)}{0.2}=1 \mathrm{~m}^{\mathrm{A} / v}$

$$
r_{0}=\frac{V_{A}}{I_{D}}=\frac{10}{1004}=100 \mathrm{k} \Omega
$$

$$
r_{0}=r_{01}=r_{02}=r_{03}
$$

(1) $\frac{V_{s 1}}{R_{11}}-g_{m 1}\left(V_{s}-V_{s i}\right)+\frac{\left(V_{s 1}-V_{G 2}\right)}{r_{01}}=0 \Rightarrow V_{s i}\left(\frac{1}{R_{11}}+g_{m 1}+\frac{1}{r_{01}}\right)-\frac{V_{G 2}}{r_{01}}=g_{m 1} V_{s}$
(2) $\operatorname{tg}_{m 1}\left(V_{S}-V_{S 1}\right)+\frac{\left(V_{G 2}-V_{S 1}\right)}{T_{01}}+\frac{V_{G 2}}{T_{0}}=0$
(3) $\frac{V_{G 3}}{r_{0}}-g_{m} V_{G 2}+\frac{V_{G 3}}{r_{02}}=0$
(4) $\frac{V_{0}}{r_{0}}-g_{m 3}\left(V_{G 3}-V_{0}\right)+\frac{V_{0}}{R_{22}}+\frac{V_{0}}{r_{03}}=0$

$$
\begin{aligned}
\text { Solve (2) } \Rightarrow & V_{G 2}\left(\frac{1}{r_{10}}+\frac{1}{r_{0}}\right)-V_{s 1}\left(g_{m 1}+\frac{1}{r_{01}}\right)+g_{m 1} V_{S}=0 \\
& V_{G 2}\left(\frac{1}{r_{01}}+\frac{1}{r_{0}}\right)+g_{m 1} V_{S}=V_{s i}\left(g_{m_{1} 1}+\frac{1}{r_{01}}\right)
\end{aligned}
$$

(1)

$$
\begin{aligned}
& V_{S 1}\left(\frac{1}{1.8 k}+\operatorname{lm}+\frac{1}{100 \mathrm{k}}\right)-\frac{V_{G 2}}{100 \mathrm{k}}=\operatorname{Im} V_{S} \\
& V_{S 1}(1.566 \mathrm{~m})-10 \mu V_{G 2}=\operatorname{lm} V_{S}
\end{aligned}
$$

(2)

$$
\begin{aligned}
& 20 \mu V_{G 2}+\operatorname{lm} V_{s}=V_{s 1}(1 m+10 \mu) \\
& V_{s 1}=\frac{20 \mu V_{G 2}}{(1 m+10 \mu)}+\frac{1 \mathrm{~m} V_{s}}{(1 \mathrm{~m}+10 \mu)}=19.8 \mathrm{~m} V_{G 2}+.990 V_{\mathrm{s}}
\end{aligned}
$$

plug into (1) \Rightarrow

$$
\begin{gathered}
19.8 \mathrm{~m} V_{G 2}(1.566 \mathrm{~m})+.990 V_{s}(1.51 \mathrm{dom})-10 \mu V_{G 2}=1 \mathrm{~m} V_{\mathrm{s}} \\
31 \mu V_{G 2}+1.55 \mathrm{~m} V_{s}-10 \mu V_{G 2}=1 \mathrm{~m} V_{\mathrm{s}} \\
21 \mu V_{G 2}=(1 \mathrm{~m}-1.55 \mathrm{~m}) V_{\mathrm{s}} \\
V_{G 2}=-26.2 \mathrm{~V} / \mathrm{V}
\end{gathered}
$$

From (3) $\Rightarrow \frac{V_{G 3}}{V_{G 2}}\left(\frac{1}{r_{0}}+\frac{1}{r_{0}}\right)=\frac{g_{m} V_{q / 2}}{\frac{1}{r_{0}}+\frac{1}{r_{0}}}=50 / \mathrm{V}$
From (4) \Rightarrow

$$
\begin{aligned}
& \frac{V_{0}}{V_{G 3}}=\frac{1 m}{10 \mu+1 m+\frac{1}{20 k}+10 \mu}=0.93 \mathrm{~V} / \mathrm{V} \\
& A=\frac{V_{0}}{V_{G 3}} \times \frac{V_{G 3}}{V_{G 2}} \times \frac{V_{G 2}}{V_{S}}=-0.93 \times 50 \times 26.2=-1.218 \mathrm{v} / \mathrm{V}
\end{aligned}
$$

$$
\frac{1}{r_{0}}+g_{m 3}+\frac{1}{R_{22}}+\frac{1}{r_{0}}
$$

$$
R_{1}^{2+}+R_{2}
$$

