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Abstract: Contemporary techniques to identify a good vari-
able order for SAT rely on identifying minimum tree-width de-
compositions. However, the problem finding a minimal width
tree decomposition for an arbitrary graph is NP complete. The
available tools and methods are impratical, as they cannot han-
dle large and hard-to-solve CNF-SAT instances. This paper pro-
poses a novel hypergraph partitioning based constraint decom-
position technique as an alternative to contemporary methods.
We model the CNF-SAT problem on a hypergraph and apply
min-cut based bi-partitioning. Clause-variable statistics across
the partitions are analyzed to further decompose the problem, it-
eratively. The resulting tree-like decomposition provides a vari-
able order for guiding CNF-SAT search. Experiments carried
out over a large and varied set of benchmarks demonstrate that
our partitioning procedure is very fast and scalable. The vari-
able order derived through the partitioning results in significant
increase in performance (often orders of magnitude) of the SAT
engine.

|. INTRODUCTION

The Boolean Satisfiability problem (henceforth called SAT)
is one of the pivotal problems in the Electronic Design Au-
tomation (EDA) arena and Acrtificial Intelligence (Al). Applica-
tions in EDA include functional verification, bounded and un-
bounded model checking, combinational equivalence checking,
logic synthesis, among others. SAT belongs to the class of NP-
complete problems for which the algorithmic solutions exhibit
exponential worst-case complexity [1].

SAT is the problem of finding a solution (if one exists) to
the equation f = 1, where f is a Boolean formula to be
satisfied. The formula (f) can be represented in Conjunc-
tive Normal Form (CNF), or with Binary Decision Diagrams
(BDDs)[2]. Classical approaches to CNF-SAT are based on
variations of the well known Davis-Putnam (DP) [3] and Davis-
Logemann-Loveland (DLL) [4] procedures. Typical versions of
the above [5] [6] [7] [8] incorporate a chronological backtrack-
based search that, at each node in the search tree, selects an
assignment and prunes subsequent search by iterative applica-
tion of the unit clause and pure literal rules [9]. Recent ap-
proaches [10] [11] [12] [13] etc., employ sophisticated methods
such as constraint propagation and simplification [9], conflict
analysis [10], learning [14] and non-chronological backtracks

[10] [12] [13] to efficiently analyze and prune the search space.
Binary Decision Diagrams (BDDs) [2] [15] have also been used
to solve the SAT problem. However, for large designs, BDDs
suffer from the well-known size explosion problem. As a re-
sult, use of BDD-based SAT tools [16] [17] has been limited to
problems of relatively small size.

In recent past, a lot of effort has been invested in trying to
understand the nature of the SAT problem. The works that
deserve mention relate to symmetry analysis [18] [19], local
search strategies [20], complexity of SAT viz-a-viz ATPG [21],
relationship of BDD variable orderings and CNF search proce-
dures [22], the amount of search space analyzed [23], UNSAT
core extraction [24] [25], among others [26] [17] [16].

Over the years, constraint partitioning and tree-decomposition
based approaches have been investigated in the context of con-
straint satisfaction problems [27] [28] [29]. Recently, such ap-
proaches have also found application in VLSI-CAD; particu-
larly with respect to those problems that can be modeled as
DPLL-based CNF-SAT search [29] [30] [31] [32]. An impor-
tant aspect of CNF-SAT search procedures is to derive an or-
dering of variablessuch that branching on that order results in
a faster, more efficient search for solutions. Above approaches
analyze and exploit the variable-constraint relationship to derive
such an order for efficient SAT search. However, the compu-
tational complexity of the proposed algorithms results in large
compute times to search for the variable order. As a result, these
techniques are somewhat impractical for solving large and hard
CNF-SAT problems [31].

This paper proposes partitioning based SAT search proce-
dures that attempt to overcome the practical limitations of the
above approaches. Hypergraph based constraint partitioning
techniques are employed to derive the tree decomposition. Vari-
able activity and clause connectivity statistics are analyzed to
make the partitioning efficient. The proposed technique is scal-
able and can operate on large set of variables and constraints
efficiently. We show that the variable order derived by our tech-
nique improves the SAT solver performance by one or more
orders of magnitude.
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Il. PREVIOUS WORK IN PARTITIONING AND TREE
DECOMPOSITION

Boolean functions arising in many applications represent
some spacial, casual or logical dependencies (or connections)
among variables. Therefore, processing these “connected”
functions together, and "disjoint” functions separately, seems
intuitively justified. This suggests that we can decompose the
given SAT problem into relatively independent groups (parti-
tions). Variables that may appear in more than one partition
would model the “connections” or dependencies among the
clauses. This motivates the use of constraint partitioning and de-
composition techniques to facilitate efficient search procedures
for CNF-SAT problems.

Analysis of clause-variable dependencies provides useful in-
formation that can be exploited for partitioning based SAT ap-
proaches. Variable activity and clause connectivity are of-
ten considered as qualitative and quantitative metrics to model
clause-variable dependencies. Activity of a variable (or literal)
is defined as the number of its occurrence among all the clauses
of a given SAT problem. For a comprehensive review of the
effect of activity-based branching strategies on SAT solver per-
formance, reviewers are referred to [33].

Loosely speaking, two clauses are said to be “connected” if
one or more variables are common to their support. Clause
connectivity can be modeled by representing CNF-SAT con-
straints as (hyper-) graphs and, subsequently, analyzing the
graph’s topological structure. Tree decomposition techniques
have been proposed in literature [27] [28] for analyzing connec-
tivity of constraints in constraint satisfaction programs (CSP).
It has been shown [34] [31] that identifying minimum tree-
width for the decomposed tree structures results in partition-
ing the overall problem into a chain of connected constraints.
MINCE [22] employs CAPO placer’s mechanism [35] to find
a variable order such that the clauses are resolved according to
their chain of connectivity. Various approaches operate on such
partitioned tree structures by deriving an order in which the par-
titioned set of constraints are resolved. For example, this order
can be computed according to the degree of constrainedness
of sub-problems [29] [30]. Other related works are: (i) guiding
SAT diagnosis based on tree decompositions [31]; (ii) partition
based decision heuristics [32]; (iii) decomposable negation nor-
mal form [36] [37].

The order in which variables (and correspondingly, con-
straints) are resolved significantly impacts the performance of
SAT search procedures. Most conventional SAT solvers [12]
[13] [10] employ activity-based branching heuristics (DLIS,
VSIDS, etc.) to resolve the constraints. On the other hand, the
tree decomposition based approaches derive the variable order
using either clause connectivity [30] [22] [31] or variable ac-
tivity [32], but usually not both of them simultaneously. In the
following section, we show, by means of an example, that anal-
ysis of variable activity or clause connectivity alone may not
result in a sufficiently robust and efficient SAT search. Subse-
quently, we motivate the need to analyze variable activity along

with clause connectivity, to derive a tree decomposition. This
tree decomposition, in turn, suggests a good variable order for
efficient SAT search.

I1l. ON THE NEED TO ANALYZE VARIABLE ACTIVITY AND
CLAUSE CONNECTIVITY SIMULTANEOUSLY

Consider the circuit shown in Fig. 1. It is required to gener-
ate a functional/simulation vector at the inputs that would excite
the values v = 0,v = 1,w = 1 at the primary outputs. This
problem can be formulated as a CNF-SAT problem by generat-
ing clauses for the gates, along with clauses for the constraints
corresponding to the required output values. It can be observed
that no such vector exists that can satisfy the required output
constraints. Hence the given problem is unsatisfiable (UNSAT).

a(l) — f(6) u (6)
b (2) ——

c(3)

Fig. 1. An Example Circuit : The integer values next to the variable names
correspond to the mapped literal in the CNF file.

Let us analyze the application of contemporary partitioning-
based procedures to derive a variable order for the example
shown in Fig. 1. Consider, first, the join-tree-clustering (JTC)
algorithm by Dechter et al. [27] [28]. The algorithm converts
the given problem to a hypergraph, in which the variables form
the vertices and clauses form the hyperedges. This graph is then
converted to an induced chordal graph?, from which, the maxi-
mal cliques are identified. A join-tree structure is created using
these cliques. This join-tree is the tree-decomposition of the
given problem, which is shown in Fig. 2. As shown in the
figure, each node corresponds to a set of clauses (partitioning).
The support variables of these clauses are depicted within the
node. For example, the top node contains clauses with variables
{1,2,6,5}. The variables labeled on the edges denote the con-
nectivity - these variables are common to adjacent nodes. This
decomposed problem is then solved using either the cluster-
tree-elimination (CTE) or adaptive-tree-consistency (ATC) al-
gorithm [28].

The above technique is geared towards reducing the tree-
width of the derived graph. The reduction in the tree-width
subsequently corresponds to modeling the constraint partitions
according to clause connectivity. Based on the decomposi-
tions shown in Fig. 2, a variable order can be derived for
SAT search by traversing the tree top-down or bottom-up. For
example, traversing the tree top-down produces the follow-
ing order: {1,2,6,5,7,3,8,4,9}. The MINCE [22] tech-
nique generates an order that is the opposite of the above
- {4,9,8,3,7,5,6,1,2}. The recent work of [31] also uses

LA graph is chordal if every cycle of length atleast 4 has a chord, that is, an
edge connecting two non-adjacent vertices.
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Fig. 2. Rina Dechter’s Method Fig. 3. Proposed Decomposition
MINCE’s variable order to produce its tree-based decomposi-
tion.

It can be observed from the figure that clauses correspond-
ing to variables 4 and 9 do not contribute to the unsatisfiabil-
ity of the problem. Variable order generated by MINCE would
branch on these variables first, which is not necessary. On the
other hand, the order generated by traversing the tree top-down
has the variables 4 and 9 appearing at the end, and hence may
lead to an efficient search. This begs the question that given
a partitioning, which order to choose such that search can be
performed efficiently? It is not easy to answer this question by
analyzing the tree decomposition because the partitioning was
derived solely on clause connectivity.

This limitation can be overcome by simultaneously analyz-
ing both variable activity and clause connectivity to generate
the tree decomposition. For example, a decomposition analyz-
ing both variable activity and connectivity is shown in Fig. 3,
with the variable order {7, 5, 6, 8, 1, 2, 3, 9, 4} generated by
traversing the tree top-down (always). The procedure to gener-
ate such a variable order is elaborated in subsequent sections of
the paper.

The authors wish to point out that the above example is used
only for didactic purposes to highlight the fact that constraint
partitioning/decomposition approaches based solely on variable
activity or clause connectivity may not be sufficiently robust.
Through the above example, we just want to motivate the need
for simultaneous activity/connectivity analysis.

A. Time complexity limitations of previous work

It is well-known [31] that the computational complexity of
contemporary tree-decomposition methods is too expensive to
be applicable for large CAD problems. The tree-decomposition
algorithms by Dechter et. al. [27] [28] are shown to be time
exponential in the tree-width. The time complexity of JTC al-
gorithmis O(r- kw*(D+1) ‘where r is the number of constraints,
k is the maximum domain size and w*(d) is the induced width
of the ordered graph. Amir et al. [38] [30] have developed
much more efficient algorithms for approximating tree-width
with bounded error [34], but even these appear to be too costly
for industrial problems.

Partitioning based approaches that are used to derive good
variable ordering for SAT search, should be fast and robust

enough to handle a large set of variables and constraints. This is
particularly important for design validation problems in VLSI-
CAD that often have a significantly large number of variables
and clauses [39]. The time required to derive a variable order
should be small as compared to the subsequent SAT solving
time - it should certainly not exceed the solving time. Unfor-
tunately, for large and hard SAT problems, we have observed
that MINCE [40] and Amir’s tools [38] reguire unacceptably
long time just to derive the variable order. Similarly, the tech-
nique of [31] is based upon MINCE and Amir’s computational
engines - as such, it also suffers from large compute times.

B. Research Contributions:

The primary goal of this research is to identify a variable or-
dering that would result in efficient and robust CNF-SAT search.
Contemporary techniques to identify a good variable order for
SAT rely on identifying minimum tree-width decompositions.
Finding a minimal width tree decomposition for an arbitrary
graphis NP complete [41]. Therefore, a very efficient algorithm
that would operate on large CNF-SAT instances is unlikely to
exist. Indeed, contemporary heuristic-based tree decomposition
methods have also been shown to be impractical [31]. Clearly,
there is a need to find an alternative to minimum tree-width de-
composition schemes. This paper suggests a solution based on
hypergraph partitioning and refinement procedures to derive a
tree decomposition.

The CNF-SAT problem is modeled on a hypergraph and min-
cut based bi-partitioning techniques are employed. Clause-
variable statistics across the partitions are analyzed and a sub-
problem corresponding to high activity variables is extracted.
Subsequently, a novel, iterative partitioning procedure is em-
ployed that analyzes the clause connectivity, in decreasing or-
der of variable activity, to decompose the constraints in a chain
of connected partitions. The resulting tree-like decomposition
provides a variable order for guiding CNF-SAT search.

Experiments carried out over a large and varied set of bench-
marks demonstrate that:

« Our partitioning procedure is very fast and scalable - parti-
tioning a large set of constraints in a matter of seconds.

« The variable order derived through the partitioning results in
significant increase in performance (often orders of magnitude)
of the SAT engine.

« Our approach is a viable alternative to contemporary mini-
mum tree-width decomposition techniques in the context of de-
riving a good variable order for SAT search.

For our experiments, we use the state-of-the-art hyper-graph
partitioning tool called HMETIS [42] [43] and port it towards
our problem of interest. To search for SAT solutions, we use a
modified version of the zCHAFF SAT solver [12]. The reason
for using zCHAFF is primarily because of its source code be-
ing available in public domain. Note that CNF-based SAT and
hyper-graph based partitioning methods are fundamental prob-
lems in VLSI-CAD. These problems have been well researched
and well established; as such they are not a subject of this paper.
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1V. CONSTRAINT DECOMPOSITION VIA HYPERGRAPH
PARTITIONING

The given SAT problem in standard DIMACS CNF formulae
is converted into a hyper-graph, where variables (as opposed to
literals) are represented as hyper-graph edges and clauses are
modeled as vertices. A balanced min-cut bi-partitioning is ap-
plied using hMeTiS. Figure 4 depicts the resulting partitioned
sets of constraints. The variables that connect both partitions
are termed as cut-set variables. These variables correspond to
clauses that appear in different partitions. The two created par-
titions are termed as LEFT and RIGHT patrtitions.

CUTSET VARIABLES

LEFT PARTITION

RIGHT PARTITION

Fig. 4. Balanced bipartitioning

While analyzing the partitioning, we made an interesting ob-
servation related to the activity statistics of the cut-set variables.
We observed that most of the variables forming the cut-set had
high activity in the overall problem. Recall that the activity of a
variable is defined as the frequency of occurrence of the variable
among clauses. SAT solvers compute the activity of variables
and perform the search by case-splitting on variables of high
activity. Contemporary tools such as zZCHAFF, BerkMin, etc.
dynamically update the activity of the variables as and when
conflict clauses are added to the original constraints. It is im-
portant to begin the search by making assignments to variables
of high activity [33] [12]. This implies that the cut-set vari-
ables should be the first choice for case-splitting. Therefore,
these variables and corresponding constraints should form the
first level of partition. To achieve this, the cut-set variables are
extracted from both the partitions (LEFT and RIGHT) and are
collected together to form a third partition as shown in Fig. 5.
As a result, the extracted subproblem corresponds to clauses
with high activity variables. Moreover, the LEFT and RIGHT
partitions have no directly connecting hyper-edges.

One might be tempted to compare the above procedure to
Amir’s most constrained subproblem extraction [30]. However,
there are subtle differences between the two. Their technique
first decomposes the entire problem into loosely connected sub-
problems and then these subproblems are ordered/resolved in
decreasing order of their clause-to-variable ratio. Their decom-
position, though, is performed by analyzing clause connectivity
alone. Our subproblem extraction also appears to be similar to
that of the separator set extraction by Gupta et al. [32]. Their
approach too extracts a set of constraints that contain high activ-
ity variables. However, from this point onwards, our approach
deviates from theirs. They recursively perform this separator set
extraction to produce smaller subproblems which are disjoint,
so that BDD’s can be built efficiently for Image Computation.

RIGHT PARTITION
LEFT PARTITION

ALL CLAUSES CORRESPONDING
TO CUTTSET VARIABLES

TRI-PARTITION
CUT-SET VARIABLES

RIGHT PARTITION
LEFT PARTITION

Fig. 5. Subproblem with high activity variables extracted from the bipartition
In contrast, we perform this subproblem extraction only once.
Subsequently, we analyze the activity of the tri-partition cut-set
variables (Fig. 5) to further decompose the problem. This is
explained below.

A. Decomposition based on variable activity and clause con-
nectivity

As shown in Fig. 5, a top-level partition is created by extract-
ing the clauses corresponding to the cut-set variables. As a first
step, these (bi-partition) cut-set variables are ordered according
to their activity and stored in a list. The SAT tool will branch on
these variables first. Note that, the clauses in top-level partition
contain a set of variables, other than the cut-set, which would
correspond to the first level of connectivity among constraints.
This is shown in Fig. 6 as LEVEL-1 CONNECTIVITY. Subse-
quently, the clauses corresponding to the LEVEL-1 CONNEC-
TIVITY VARIABLES are extracted to form the next level of par-
tition. Again, these LEVEL-1 CONNECTIVITY VARIABLES are
ordered according to their corresponding activity. To break ties,
Level-1 connectivity variables are ordered according to their ac-
tivity within the Level-1 partition. This subset of ordered vari-
ables is appended to the list. Repeating the above procedure,
results in a fully decomposed tree as shown in Fig. 7.

The operation of our algorithm can be visualized for the ex-
ample circuit show in Fig. 1. The decomposition tree is shown
in Fig. 3. It can be observed from the circuit that the activ-
ity of variables {6, 7, 5, 8} is the highest. Variables {7, 5}
form the bi-partition cut-set created by HMETIS. Clauses cor-
responding to these cut-set variables are extracted to form the
top-level partition. Observe that variables {3, 6, 8, 1, 2} are the
Level-1 connectivity variables. Ordering these Level-1 connec-
tivity variables according to their activity results in {6, 8, 1, 2,
3}. Finally, variables {9, 4} result in the next level of connec-
tivity. Hence, the order for SAT search is {7, 5, 6, 8, 1, 2, 3, 9,

4}.
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0 — CLAUSES
~~ — VARIABLES

CUT-SET

LEVEL-2
CONNECTIVITY

LEVEL-2
CONNECTIVITY

Fig. 6. Tree Decomposition

ACTIVITY

LEVEL -1 PARTITION

¥

LEVEL -2 PARTITIO

LEVEL-1 CONNECTIVITY
VARIABLE

ACTIVITY

ACTIVITY &!—!—

O o
LEVEL -n PARTITIOJ

Fig. 7. Fully decomposed SAT problem

V. EXPERIMENTAL RESULTS AND ANALYSIS

The above approach has been programmed as an algorithm
which is integrated with both HMETIS [42] and zZCHAFF [12].
The algorithm first converts the CNF-SAT constraints to a hy-
pergraph and invokes HMETIS to perform the balanced min-cut
partitioning. The resulting partitions are analyzed to perform
the decomposition and, subsequently, the required variable or-
der is derived. This variable order is given to the CNF-SAT
tool zZCHAFF as an initial order on which branching/decision
making is performed. On encountering conflicts during the
search, we allow zCHAFF to add conflict induced clauses and
proceed with its book-keeping and (non-chronological) back-
tracking procedures. Using this setup, experiments were con-
ducted over a wide range of benchmarks from: (i) DIMACS
suite [44]; (ii) Miter circuits; (iii) Fpga routing benchmarks;
(iv) Urquhart problems [45]; (v) Micro-processor verification
benchmarks [39]. The results are analyzed below.

First, we compare the time required to derive the variable or-
der by our approach with that of Amir et al. [38] and MINCE
[40]. Some results for the larger and harder-to-solve CNF-SAT
instances are presented in the Table I. As it can be observed

TABLE |
COMPARISON OF OUR PARTITIONING TIME WITH ORIGINAL ZCHAFF
RUNTIME, AMIR’SAND MINCE’SPARTITIONING TIME

Bench- Vars/ zCHAFF Amir MINCE | Ours
mark Clauses (sec) (sec) (sec) (sec)
€2670_opt 2527 /6438 1.48 16.54 8.23 1.15
€3540_opt 343179262 20.57 23.66 13.95 1.42
c5315_opt | 4992/ 14151 34.62 54.56 25.51 1.25
c7552_opt | 5466 /15150 105.97 71.30 24.43 1.76
4pipe 5237 /80213 111.2 505.83 93.1 13.84
Spipe 9471/ 195452 167.22 >2000 267.2 38.40

from the table, in order to derive the variable order both Amir’s
and MINCE approach suffer from long compute times - much
longer than the default SAT solving time. In contrast, our ap-
proach can derive the variable order much faster than the other
two. This clearly demonstrates the computational limitations of
these methods; as such Amir’s and MINCE approach are too
expensive to be applicable for large CAD problems.

We now demonstrate that the variable order derived by our
technique results in significant speed up (orders of magnitude in
many cases) over the one conventionally used by zZCHAFF. The
experiments were performed on both satisfiable and unsatisfi-
able instances. For the satisfiable instances, we experimented
with the FPGA routing benchmarks, which are known to be
difficult-to-solve instances and for the unsatisfiable instances,
we experimented with the Velev’s benchmark suite (FVP UN-
SAT 1.0, FVP UNSAT 2.0), Urquhart problems [45] and the
miter circuits. The results are presented in Table Il. Also, most
of the benchmarks we experimented are both large and hard-
to-solve instances. In the table, column 3, 4 and 5 corresponds
to the original zZCHAFF solving time, number of decisions and
number of implications, respectively. Column 6 shows the tree
decomposition time of our approach and column 7 shows the
solving time of our modified zZCHAFF solver. Column 8 shows
the total time required to solve the problem, including both
search time and partitioning time. Column 9 and 10 corresponds
to the number of decisions and implications generated during
our SAT search.

Itis clearly seen from the table that the performance of CNF-
SAT solver has been greatly improved with our variable or-
der. The run times of our proposed approach are significantly
smaller than that of original zZCHAFF SAT solver, even for the
larger and more difficult instances. Note that our approach per-
forms better than original zZCHAFF for most of these bench-
marks - barring a few for which the compute times are compa-
rable. It can be also noted that as compared to original ZCHAFF,
our results show consistent improvements in the number of de-
cisions as well as implications made by zCHAFF using the de-
cision order derived by our proposed method.

A. Advantagesand Limitations of Our Approach

One of the most important advantages of our approach over
that of the other tree decomposition ones is that our technique
is scalable and hence, applicable to practical CAD problems.
Even though, we do not perform minimum tree-width decom-
position directly, the variable order derived by our approach sig-
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TABLE Il
RUN-TIME COMPARISON OF OUR PROPOSED APPROACH WITH ZCHAFF

Original zZCHAFF Modified zZCHAFF
Bench- Vars/ Time Deci- Implica- Partition Solve Total Deci- Implica-
mark Clauses (sec) sions tions Time(s) | Time(s) | Time(s) sions tions
fpgal0_8 120/ 448 15.66 54,199 980,436 0.16 0.01 0.17 460 3,935
fpgal0-9 135/549 95.64 160,892 2,736,044 0.166 0.03 0.196 1,714 26,599
fpgal2_8 144/ 560 244.42 279,070 5,749,638 0.173 0.41 0.583 5,674 95,031
fpgal2_9 162 / 684 >1000 — 0.199 1.13 1.329 14,095 295,693
fpgal2_11 180/ 820 >1000 — — 0.278 3.46 3.738 26,521 433,912
fpgal2_12 198 /968 727.44 | 455,458 7,846,633 0.02 0.288 0.3 1,679 16,670
fpgal3_10 195 /905 >1000 — 1.14 0.231 1.371 12,949 219,829
fpgal3_12 23411242 >1000 — 0.06 0.353 0.413 2,250 32,698
Urg3_1 437334 112.05 | 1,053,197 12,730,779 0.102 7.81 7.912 174,977 1,109,054
uUrg3_4 36/220 0.07 6,098 38,021 0.083 0.08 0.163 4,837 45,992
uUrg3-9 371236 3.37 80,290 1,025,862 0.076 1.68 1.756 41,869 351,605
Urg3-10 371236 3.37 80,290 1,025,862 0.076 0.93 1.006 25,012 173,403
€880_opt 770/2126 1.13 16,911 812,548 0.362 0.33 0.392 11,477 432,012
c1355_opt 1006 / 2954 13.62 98,931 8,560,559 0.549 0.46 1.009 14,659 631,135
€1908_opt 1895 /5023 1.67 20,014 263,4902 0.9 0.82 1.72 14,053 1,508,262
€2670_opt 2527 /6438 1.48 45,713 1,921,714 1.15 1.38 2.53 53,150 1,993,412
¢3540_opt 343179262 20.57 74,325 16,600,030 1.42 22.22 23.64 83,304 18,984,371
c5315_opt 4992 /14151 34.62 136,531 19,829,630 1.25 13.35 14.6 128,008 13,129,260
c7552_opt 5466 / 15150 105.97 384,776 42,128,278 1.76 39.7 41.46 257,514 25,418,457
3pipe 2468 / 27533 1.67 32,816 1,956,556 4.27 3.27 7.54 54,194 3,402,468
4pipe 5237 /80213 111.2 471,592 71,488,318 13.84 74.27 88.11 415,351 53,194,998
5pipe 9471/ 195452 167.22 | 1,773,807 94,373,254 38.40 86.76 125.16 875,782 46,788,886
3pipe_k 2391 /27405 252 48,902 2,796,441 3.526 24 5.926 43,815 2,478,836
4pipe_k 5095 / 79489 184.2 711,615 106,337,088 12.327 51.62 63.947 256,708 38,272,072
5pipe_k 9330/ 189109 764.47 | 1,823,949 | 417,340,698 39.43 384.57 424.0 1,337,479 | 240,184,009
3pipe-_q0_k 2476 / 25181 8.6 123,615 5,294,597 4.02 1.51 5.53 40,940 2,009,529
4pipe_q0_k 5380 / 69072 56.83 394,973 51,775,049 13.133 24.59 37.723 227,948 26,294,080
5pipe_q0_k 10026 / 154409 || 573.25 | 15,72,754 | 374,623,438 37.231 395.39 | 432.62 | 1,754,215 | 444,278,100
[ Svliw_bp_mc.cnf | 200937179492 || 23521 | 3,619,845 | 94,144,205 || 33.05 | 238.39 | 27144 | 3,741,337 | 88,779,625 |

nificantly increases the performance of SAT search. Another
advantageous application of our approach is that of efficient in-
cremental SAT solving. As a set of constraints generated in-
crementally, our decomposition scheme can guide SAT diagno-
sis by suggesting the order in which the variables and clauses
should be added to the system for efficient resolution.

As far as the limitations of our approach is concerned, our
partitioning would not be very effective for instances such as
the NQueens problem where all variables are present in all the
clauses. Thus, the graph represents a clique. In such a case,
when our top level partition is extracted it would encompass the
entire set of constraints. However, it can be shown that min-
imum width tree decomposition techniques would also fail in
those instances.

VI. CONCLUSIONS AND FUTURE WORK

This paper has presented a constraint partitioning scheme that
can be exploited to derive a good variable order that can be used
to guide CNF-SAT search for faster SAT solving. As opposed
to contemporary minimum tree-width decomposition schemes,
our approach performs constraint partitioning on a hypergraph
by analyzing both variable activity and clause connectivity. As
a result, not only is our technique fast, scalable and robust, it
also generates a variable order that outperforms those gener-
ated by contemporary tools. A novel partitioning procedure
has been proposed and its effectiveness has been demonstrated

over a wide range of benchmarks of large size and high diffi-
culty. Our approach has demonstrated that constraint partition-
ing based SAT methods can be made to work in practice as a vi-
able alternative to minimum width tree decomposition schemes
for SAT. As part of future work, we would like to analyze the
effect of our partitioning with applications to both Incremental
SAT and parallel SAT.
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